简单运算

  现在有有个需求,给定一个数组,让数组中每一个数乘以2,怎么做呢

n = 10
L = [i for i in range(n)]
L # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
2 * L # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
A = []
for e in L:
A.append(2*e)
A # [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
L = np.arange(n)
2 * L
# array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

各种写法性能比较

n = 1000000
L = [i for i in range(n)] %%time
A = []
for e in L:
A.append(2*e)
"""
CPU times: user 253 ms, sys: 30 ms, total: 283 ms
Wall time: 303 ms
""" %%time
A = [2*e for e in L]
"""
CPU times: user 93.6 ms, sys: 25.8 ms, total: 119 ms
Wall time: 128 ms
""" L = np.arange(n)
%%time
A = np.array(2*e for e in L)
"""
CPU times: user 15.1 ms, sys: 8.97 ms, total: 24.1 ms
Wall time: 24.8 ms
""" %%time
A = 2 * L
"""
CPU times: user 15.1 ms, sys: 8.97 ms, total: 24.1 ms
Wall time: 24.8 ms
"""

NumPy’s UFuncs (Universal Functions)

  全称通用函数(universal function),是一种能够对数组中所有元素进行操作的函数

  • 四则运算:加(+)、减(-)、乘(*)、除(/)、幂(**):数组间的四则运算表示对每个数组中的元素分别进行四则运算,所以形状必须相同
  • 比较运算:>、<、==、>=、<=、!=  :比较运算返回的结果是一个布尔数组,每个元素为每个数组对应元素的比较结果。
  • 逻辑运算:np.any函数表示逻辑“or”,np.all函数表示逻辑“and”  :运算结果返回布尔值
X = np.arange(1, 16).reshape((3, 5))
"""
array([[ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15]])
"""
# 每个元素 + 1
X + 1
# 每个元素 - 1
X - 1
# 每个元素 * 2
X * 2
# 每个元素 / 2
X / 2
# 每个元素的平方
X ** 2
# 求余
X % 2
# 倒数
1 / X

还有下面等一系列方法

np.abs(X)
np.sin(X)
np.cos(X)
np.tan(X)
np.arctan(X)
np.exp(X)
np.exp2(X)
np.power(3, X)
np.log(X)
np.log2(X)
np.log10(X)

矩阵间运算

A = np.arange(4).reshape(2, 2)
B = np.full((2, 2), 10)
A + B
A - B
# ×乘,每个对应位置相乘
A * B
# .乘,C11 = A的第一行*B的第一列,先乘后加
A.dot(B)
# 转置
A.T
# 返回自身的共轭转置
A.H
# 返回自身的逆矩阵
A.I
# 返回自身数据的2维数组的一个视图
A.A

向量和矩阵的运算

加法

A = np.arange(4).reshape(2, 2)
v = np.array([1, 2])
v + A
"""
array([[1, 3],
[3, 5]])
"""

乘法

v * A
"""
array([[0, 2],
[2, 6]])
"""
v.dot(A) # array([4, 7])
A.dot(v) # array([2, 8])

矩阵的逆与伪逆

矩阵的逆

B = np.linalg.inv(A)
A.dot(B)
"""
array([[1., 0.],
[0., 1.]])
"""

矩阵的伪逆

X = np.arange(16).reshape((2, 8))
pinvX = np.linalg.pinv(X)
X.dot(pinvX)
"""
array([[ 1.00000000e+00, -2.77555756e-16],
[ 1.69309011e-15, 1.00000000e+00]])
"""

  矩阵的伪逆又被称为“广义逆矩阵”

Numpy 中arg运算

x = np.random.normal(0, 1, 1000000)
np.argmin(x) #获取最小值的下标
np.argmax(x)

numpy.array 中的运算的更多相关文章

  1. python 中 numpy array 中的维度

    简介 numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数.有时候我们可能需要知道某一维的特定维数. 二维情况 >>> import numpy as np ...

  2. 第四十篇 入门机器学习——Numpy.array的基本操作——向量及矩阵的运算

    No.1. Numpy.array相较于Python原生List的性能优势 No.2. 将向量或矩阵中的每个元素 + 1 No.2. 将向量或矩阵中的所有元素 - 1 No.3. 将向量或矩阵中的所有 ...

  3. 对Numpy数组按axis运算的理解

    Python的Numpy数组运算中,有时会出现按axis进行运算的情况,如 >>> x = np.array([[1, 1], [2, 2]]) >>> x arr ...

  4. Python Numpy Array

    Numpy 是Python中数据科学中的核心组件,它给我们提供了多维度高性能数组对象. Arrays Numpy.array   dtype 变量 dtype变量,用来存放数据类型, 创建数组时可以同 ...

  5. python的numpy.array

    为什么要用numpy Python中提供了list容器,可以当作数组使用.但列表中的元素可以是任何对象,因此列表中保存的是对象的指针,这样一来,为了保存一个简单的列表[1,2,3].就需要三个指针和三 ...

  6. 【笔记】numpy.array的常用基本运算以及对数据的操作

    numpy.array的基本运算以及对数据的操作 设置一个问题,例如 这种只需要基本的运算就可以实现 类似的 numpy对向量的运算进行了优化,速度是相当快的,这种被称为universal funct ...

  7. 【python】numpy array特殊数据统一处理

    array中的某些数据坏掉,想要统一处理,找到了这个方法,做个笔记. 比如,把数组中所有小于0的数字置为0 import numpy as np t = np.array([-2, -1, 0, 1, ...

  8. python numpy array 的一些问题

    1 将list转换成array 如果list的嵌套数组是不规整的,如 a = [[1,2], [3,4,5]] 则a = numpy.array(a)之后 a的type是ndarray,但是a中得元素 ...

  9. numpy.array

    关于python中的二维数组,主要有list和numpy.array两种. 好吧,其实还有matrices,但它必须是2维的,而numpy arrays (ndarrays) 可以是多维的. 我们主要 ...

随机推荐

  1. 快学Scala 第十课 (包和包对象)

    Scala包定义: 嵌套式: package a1 { class a1Class{ val age = 10 } package a2 { class PackageTest { def main( ...

  2. spring5 源码深度解析----- AOP目标方法和增强方法的执行(100%理解AOP)

    上一篇博文中我们讲了代理类的生成,这一篇主要讲解剩下的部分,当代理类调用时,目标方法和代理方法是如何执行的,我们还是接着上篇的ReflectiveMethodInvocation类Proceed方法来 ...

  3. Inkscape 旋转并复制

    画一个图形,点击图标. 然后图标中心有个十字叉, 然后把这个十字叉拖到你想要旋转的地方. 然后shift+ctrl+m打开变换菜单. 选择旋转选项卡,然后设置角度,点击应用.就可以旋转了,如果配合ct ...

  4. gorilla/mux类库解析

    golang自带的http.SeverMux路由实现简单,本质是一个map[string]Handler,是请求路径与该路径对应的处理函数的映射关系.实现简单功能也比较单一: 不支持正则路由, 这个是 ...

  5. 项目一:ssm超市订单管理系统

    声明:项目参考于课程教材,学习使用,仅在此记录 项目介绍 ssm超市订单管理系统,功能模块有订单管理,供应商管理,用户管理,密码修改,退出系统,管理模块中包括基本的增删改查 集成工具使用idea,基于 ...

  6. BUUCTF刷题记录(Web方面)

    WarmUp 首先查看源码,发现有source.php,跟进看看,发现了一堆代码 这个原本是phpmyadmin任意文件包含漏洞,这里面只不过是换汤不换药. 有兴趣的可以看一下之前我做的分析,http ...

  7. 基于STM32F429和HAL库的CAN收发例程

    1.CAN协议介绍 CAN 是 Controller Area Network 的缩写(以下称为 CAN),是 ISO 国际标准化的串行通信协议.在当前的汽车产业中,出于对安全性.舒适性.方便性.低公 ...

  8. eclipse 的使用

    eclipse 的官方下载:https://www.eclipse.org/downloads/ 安装时选择 :Eclipse  IDE for Java EE Developers 设置: 1. 编 ...

  9. RF分层封装

    1.如何管理用例? (1).在ride工具中分层管理用例(案例层.元素层.流程层),提高效率 (2).偶尔运行下,保证脚本能正常跑动 2.用例分层操作 案例层:需要加载流程层.txt资源和Seleni ...

  10. 代码审计-thinkphp3.2.3框架漏洞sql注入

    开始复现审计一下tp3和tp5的框架漏洞,当个练习吧. 涉及注入的方法为where() table() delete()等. 环境 tp3.2.3 : 0x01 注入成因 测试代码: public f ...