简单理解EM算法Expectation Maximization
1.EM算法概念
EM 算法,全称 Expectation Maximization Algorithm。期望最大算法是一种迭代算法,用于含有隐变量(Hidden Variable)的概率参数模型的最大似然估计或极大后验概率估计。
1.1 问题描述
我们假设学校男生和女生分别服从两种不同的正态分布,即男生 ,女生
,(注意:EM算法和极大似然估计的前提是一样的,都要假设数据总体的分布,如果不知道数据分布,是无法使用EM算法的)。那么该怎样评估学生的身高分布呢?
简单啊,我们可以随便抽 100 个男生和 100 个女生,将男生和女生分开,对他们单独进行极大似然估计。分别求出男生和女生的分布。
假如某些男生和某些女生好上了,纠缠起来了。咱们也不想那么残忍,硬把他们拉扯开。这时候,你从这 200 个人(的身高)里面随便给我指一个人(的身高),我都无法确定这个人(的身高)是男生(的身高)还是女生(的身高)。用数学的语言就是,抽取得到的每个样本都不知道是从哪个分布来的。那怎么办呢?
1.2 EM算法
这个时候,对于每一个样本或者你抽取到的人,就有两个问题需要估计了,一是这个人是男的还是女的,二是男生和女生对应的身高的正态分布的参数是多少。这两个问题是相互依赖的:
- 当我们知道了每个人是男生还是女生,我们可以很容易利用极大似然对男女各自的身高的分布进行估计。
- 反过来,当我们知道了男女身高的分布参数我们才能知道每一个人更有可能是男生还是女生。例如我们已知男生的身高分布为
, 女生的身高分布为
, 一个学生的身高为180,我们可以推断出这个学生为男生的可能性更大。
但是现在我们既不知道每个学生是男生还是女生,也不知道男生和女生的身高分布。这就成了一个先有鸡还是先有蛋的问题了。鸡说,没有我,谁把你生出来的啊。蛋不服,说,没有我,你从哪蹦出来啊。为了解决这个你依赖我,我依赖你的循环依赖问题,总得有一方要先打破僵局,不管了,我先随便整一个值出来,看你怎么变,然后我再根据你的变化调整我的变化,然后如此迭代着不断互相推导,最终就会收敛到一个解(草原上的狼和羊,相生相克)。这就是EM算法的基本思想了。
EM的意思是“Expectation Maximization”,具体方法为:
先设定男生和女生的身高分布参数(初始值),例如男生的身高分布为
, 女生的身高分布为
,当然了,刚开始肯定没那么准;
然后计算出每个人更可能属于第一个还是第二个正态分布中的(例如,这个人的身高是180,那很明显,他极大可能属于男生),这个是属于Expectation 一步;
我们已经大概地按上面的方法将这 200 个人分为男生和女生两部分,我们就可以根据之前说的极大似然估计分别对男生和女生的身高分布参数进行估计(这不变成了极大似然估计了吗?极大即为Maximization)这步称为 Maximization;
然后,当我们更新这两个分布的时候,每一个学生属于女生还是男生的概率又变了 ,那么我们就再需要调整E步;
……如此往复,直到参数基本不再发生变化或满足结束条件为止。
1.3 总结
上面的学生属于男生还是女生我们称之为隐含参数,女生和男生的身高分布参数称为模型参数。
EM 算法解决这个的思路是使用启发式的迭代方法,既然我们无法直接求出模型分布参数,那么我们可以先猜想隐含参数(EM 算法的 E 步),接着基于观察数据和猜测的隐含参数一起来极大化对数似然,求解我们的模型参数(EM算法的M步)。由于我们之前的隐含参数是猜测的,所以此时得到的模型参数一般还不是我们想要的结果。我们基于当前得到的模型参数,继续猜测隐含参数(EM算法的 E 步),然后继续极大化对数似然,求解我们的模型参数(EM算法的M步)。以此类推,不断的迭代下去,直到模型分布参数基本无变化,算法收敛,找到合适的模型参数。
一个最直观了解 EM 算法思路的是 K-Means 算法。在 K-Means 聚类时,每个聚类簇的质心是隐含数据。我们会假设 K 个初始化质心,即 EM 算法的 E 步;然后计算得到每个样本最近的质心,并把样本聚类到最近的这个质心,即 EM 算法的 M 步。重复这个 E 步和 M 步,直到质心不再变化为止,这样就完成了 K-Means 聚类。
参考链接:
https://blog.csdn.net/lin_limin/article/details/81048411
https://zhuanlan.zhihu.com/p/36331115
简单理解EM算法Expectation Maximization的更多相关文章
- EM算法(Expectation Maximization Algorithm)
EM算法(Expectation Maximization Algorithm) 1. 前言 这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...
- EM算法(Expectation Maximization Algorithm)初探
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b: ...
- EM算法(Expectation Maximization)
1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成绩的分 ...
- EM 算法 Expectation Maximization
- EM(Expectation Maximization)算法
EM(Expectation Maximization)算法 参考资料: [1]. 从最大似然到EM算法浅解 [2]. 简单的EM算法例子 [3]. EM算法)The EM Algorithm(详尽 ...
- 最大期望算法 Expectation Maximization概念
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Lat ...
- 如何感性地理解EM算法?
https://www.jianshu.com/p/1121509ac1dc 如果使用基于最大似然估计的模型,模型中存在隐变量,就要用EM算法做参数估计.个人认为,理解EM算法背后的idea,远比看懂 ...
- 简单理解Hash算法的作用
什么是Hash Hash算法,简称散列算法,也成哈希算法(英译),是将一个大文件映射成一个小串字符.与指纹一样,就是以较短的信息来保证文件的唯一性的标志,这种标志与文件的每一个字节都相关,而且难以找到 ...
- 2. EM算法-原理详解
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...
随机推荐
- Linux学习笔记-第1天(补发)- 新的开始
本来不打算补发第一天的笔记,第一天讲的内容并不多,且大部分内容都是书本上已有的,就没有写多少笔记. 其实在学习的过程中我挺好奇其它同学各种千奇百怪的问题.想法是怎么来的,我怎么想不出来这些.或许这就是 ...
- oracle--DG监控脚本
conn sys@oracle01 as sysdba column dest_name format a30 column destination format a20 column MEMBER ...
- 浅析容斥和DP综合运用
浅析容斥和DP综合运用 前言 众所周知在数数题中有一种很重要的计数方法--容斥.但是容斥有一个很大的缺陷:枚举子集的复杂度过高.所以对于数据规模较大的情况会很乏力,那么我们就只能引入容斥DP. 复习一 ...
- Spring 源码分析之AbstractApplicationContext源码分析
首先我觉得分析ApplicationContext必须从它的实现类开始进行分析,AbstractApplicationContext我觉得是一个不错的选择,那我们就从这里开始逐一分析吧,首先我自己手画 ...
- Apache Commons 简介
Apache Commons 由多个独立发布的软件包组成,此页面提供了当前可用的 Commons 组件的概述. Components BCEL 字节码工程库 - 分析,创建和操作 Java 类文件. ...
- WPF ResourceDictionary XAML资源 c#代码 获取与遍历
使用C#代码来获取XAML资源,除去正常的FindResource.而且是能查询到资源的对象. 说实话还是很麻烦的. 比如说我现在有一堆静态资源放在xaml的资源中,我想通过绑定的方式来获取. 好比是 ...
- MySQL使用现状分析与优化
前言 再紧张的裁员氛围,也不该影响你学习的心态.不要本末倒置,技术永远不会落后,只要你还在学习的道路上,没有后退. 数据库架构 目前生产环境RDS是多区可用架构.数据库实例发生计划内或计划外的中断时, ...
- 如何将云上的Linux文件自动备份到本地服务器
需求场景: 将云上一台Linux服务器文件备份到本地服务器,一周一备即可. 面对这样一个需求,我们可能面临下列几个问题, 备份方式:是云服务器推文件到本地服务器写入,还是本地服务器从云服务器拉文件?这 ...
- Redis(七)持久化(Persistence)
前言 前文中介绍到Redis时内存的K-V数据结构存储服务器.Redis的高性能原因之一在于其读写数据都是在内存中进行.它的架构实现方式决定了Redis的数据存储具有不可靠性,易丢失,因为RAM内存在 ...
- 脱离 WebView 的通信 JavaScriptCore
JavascriptCore JavascriptCore 一直作为 WebKit 中内置的 JS 引擎使用,在 iOS7 之后,Apple 对原有的 C/C++ 代码进行了 OC 封装,成为系统级的 ...