1.1.1     常规性能调优一:最优资源配置

Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。

资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示:、

/usr/opt/modules/spark/bin/spark-submit \
--class com.atguigu.spark.Analysis \
--num-executors \
--driver-memory 6g \
--executor-memory 6g \
--executor-cores \
/usr/opt/modules/spark/jar/spark.jar \

可以进行分配的资源如表2-1所示:

表2-1 可分配资源表

名称

说明

--num-executors

配置Executor的数量

--driver-memory

配置Driver内存(影响不大)

--executor-memory

配置每个Executor的内存大小

--executor-cores

配置每个Executor的CPU core数量

调节原则:尽量将任务分配的资源调节到可以使用的资源的最大限度。

对于具体资源的分配,我们分别讨论Spark的两种Cluster运行模式:

第一种是Spark Standalone模式,你在提交任务前,一定知道或者可以从运维部门获取到你可以使用的资源情况,在编写submit脚本的时候,就根据可用的资源情况进行资源的分配,比如说集群有15台机器,每台机器为8G内存,2个CPU core,那么就指定15个Executor,每个Executor分配8G内存,2个CPU core。

第二种是Spark Yarn模式,由于Yarn使用资源队列进行资源的分配和调度,在表写submit脚本的时候,就根据Spark作业要提交到的资源队列,进行资源的分配,比如资源队列有400G内存,100个CPU core,那么指定50个Executor,每个Executor分配8G内存,2个CPU core。

对表2-1中的各项资源进行了调节后,得到的性能提升如表2-2所示:

表2-2 资源调节后的性能提升

名称

解析

 

 

增加Executor·个数

在资源允许的情况下,增加Executor的个数可以提高执行task的并行度。比如有4个Executor,每个Executor有2个CPU core,那么可以并行执行8个task,如果将Executor的个数增加到8个(资源允许的情况下),那么可以并行执行16个task,此时的并行能力提升了一倍。

 

 

 

增加每个Executor的CPU core个数

在资源允许的情况下,增加每个Executor的Cpu core个数,可以提高执行task的并行度。比如有4个Executor,每个Executor有2个CPU core,那么可以并行执行8个task,如果将每个Executor的CPU core个数增加到4个(资源允许的情况下),那么可以并行执行16个task,此时的并行能力提升了一倍。

 

 

 

 

 

 

 

增加每个Executor的内存量

在资源允许的情况下,增加每个Executor的内存量以后,对性能的提升有三点:

  1. 可以缓存更多的数据(即对RDD进行cache),写入磁盘的数据相应减少,甚至可以不写入磁盘,减少了可能的磁盘IO;
  2. 可以为shuffle操作提供更多内存,即有更多空间来存放reduce端拉取的数据,写入磁盘的数据相应减少,甚至可以不写入磁盘,减少了可能的磁盘IO;
  3. 可以为task的执行提供更多内存,在task的执行过程中可能创建很多对象,内存较小时会引发频繁的GC,增加内存后,可以避免频繁的GC,提升整体性能。
/usr/local/spark/bin/spark-submit \
--class com.atguigu.spark.WordCount \
--num-executors \
--driver-memory 6g \
--executor-memory 6g \
--executor-cores \
--master yarn-cluster \
--queue root.default \
--conf spark.yarn.executor.memoryOverhead= \
--conf spark.core.connection.ack.wait.timeout= \
/usr/local/spark/spark.jar

参数配置参考值:

--num-executors:50~100

--driver-memory:1G~5G

--executor-memory:6G~10G

--executor-cores:3

--master:实际生产环境一定使用yarn-cluster

1.1.1     常规性能调优二:RDD优化

RDD复用

在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如图2-1所示:

对图2-1中的RDD计算架构进行修改,得到如图2-2所示的优化结果:

1.2.2 RDD持久化

在Spark中,当多次对同一个RDD执行算子操作时,每一次都会对这个RDD以之前的父RDD重新计算一次,这种情况是必须要避免的,对同一个RDD的重复计算是对资源的极大浪费,因此,必须对多次使用的RDD进行持久化,通过持久化将公共RDD的数据缓存到内存/磁盘中,之后对于公共RDD的计算都会从内存/磁盘中直接获取RDD数据。

对于RDD的持久化,有两点需要说明:

第一,RDD的持久化是可以进行序列化的,当内存无法将RDD的数据完整的进行存放的时候,可以考虑使用序列化的方式减小数据体积,将数据完整存储在内存中。

第二,如果对于数据的可靠性要求很高,并且内存充足,可以使用副本机制,对RDD数据进行持久化。当持久化启用了复本机制时,对于持久化的每个数据单元都存储一个副本,放在其他节点上面,由此实现数据的容错,一旦一个副本数据丢失,不需要重新计算,还可以使用另外一个副本。

1.2.3 RDD尽可能早的filter操作

获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率。

1.1.1     常规性能调优三:并行度调节

Spark作业中的并行度指各个stage的task的数量。

如果并行度设置不合理而导致并行度过低,会导致资源的极大浪费,例如,20个Executor,每个Executor分配3个CPU core,而Spark作业有40个task,这样每个Executor分配到的task个数是2个,这就使得每个Executor有一个CPU core空闲,导致资源的浪费。

理想的并行度设置,应该是让并行度与资源相匹配,简单来说就是在资源允许的前提下,并行度要设置的尽可能大,达到可以充分利用集群资源。合理的设置并行度,可以提升整个Spark作业的性能和运行速度。

Spark官方推荐,task数量应该设置为Spark作业总CPU core数量的2~3倍。之所以没有推荐task数量与CPU core总数相等,是因为task的执行时间不同,有的task执行速度快而有的task执行速度慢,如果task数量与CPU core总数相等,那么执行快的task执行完成后,会出现CPU core空闲的情况。如果task数量设置为CPU core总数的2~3倍,那么一个task执行完毕后,CPU core会立刻执行下一个task,降低了资源的浪费,同时提升了Spark作业运行的效率。

Spark作业并行度的设置如代码清单2-2所示:

val conf = new SparkConf()
.set("spark.default.parallelism", "")

常规性能调优四:广播大变量

默认情况下,task中的算子中如果使用了外部的变量,每个task都会获取一份变量的复本,这就造成了内存的极大消耗。一方面,如果后续对RDD进行持久化,可能就无法将RDD数据存入内存,只能写入磁盘,磁盘IO将会严重消耗性能;另一方面,task在创建对象的时候,也许会发现堆内存无法存放新创建的对象,这就会导致频繁的GC,GC会导致工作线程停止,进而导致Spark暂停工作一段时间,严重影响Spark性能。

假设当前任务配置了20个Executor,指定500个task,有一个20M的变量被所有task共用,此时会在500个task中产生500个副本,耗费集群10G的内存,如果使用了广播变量, 那么每个Executor保存一个副本,一共消耗400M内存,内存消耗减少了5倍。

广播变量在每个Executor保存一个副本,此Executor的所有task共用此广播变量,这让变量产生的副本数量大大减少。

在初始阶段,广播变量只在Driver中有一份副本。task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中尝试获取变量,如果本地没有,BlockManager就会从Driver或者其他节点的BlockManager上远程拉取变量的复本,并由本地的BlockManager进行管理;之后此Executor的所有task都会直接从本地的BlockManager中获取变量。

1.1.1     常规性能调优五:Kryo序列化

默认情况下,Spark使用Java的序列化机制。Java的序列化机制使用方便,不需要额外的配置,在算子中使用的变量实现Serializable接口即可,但是,Java序列化机制的效率不高,序列化速度慢并且序列化后的数据所占用的空间依然较大。

Kryo序列化机制比Java序列化机制性能提高10倍左右,Spark之所以没有默认使用Kryo作为序列化类库,是因为它不支持所有对象的序列化,同时Kryo需要用户在使用前注册需要序列化的类型,不够方便,但从Spark 2.0.0版本开始,简单类型、简单类型数组、字符串类型的Shuffling RDDs 已经默认使用Kryo序列化方式了。

Kryo序列化注册方式的实例代码如代码清单2-3所示:

默认情况下,Spark使用Java的序列化机制。Java的序列化机制使用方便,不需要额外的配置,在算子中使用的变量实现Serializable接口即可,但是,Java序列化机制的效率不高,序列化速度慢并且序列化后的数据所占用的空间依然较大。

Kryo序列化机制比Java序列化机制性能提高10倍左右,Spark之所以没有默认使用Kryo作为序列化类库,是因为它不支持所有对象的序列化,同时Kryo需要用户在使用前注册需要序列化的类型,不够方便,但从Spark 2.0.0版本开始,简单类型、简单类型数组、字符串类型的Shuffling RDDs 已经默认使用Kryo序列化方式了。

Kryo序列化注册方式的实例代码如代码清单2-3所示:

public class MyKryoRegistrator implements KryoRegistrator
{
@Override
public void registerClasses(Kryo kryo)
{
kryo.register(StartupReportLogs.class);
}
}

代码清单2-4 Kryo序列化机制配置代码

//创建SparkConf对象
val conf = new SparkConf().setMaster(…).setAppName(…)
//使用Kryo序列化库,如果要使用Java序列化库,需要把该行屏蔽掉
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
//在Kryo序列化库中注册自定义的类集合,如果要使用Java序列化库,需要把该行屏蔽掉
conf.set("spark.kryo.registrator", "atguigu.com.MyKryoRegistrator");

常规性能调优六:调节本地化等待时长

Spark作业运行过程中,Driver会对每一个stage的task进行分配。根据Spark的task分配算法,Spark希望task能够运行在它要计算的数据算在的节点(数据本地化思想),这样就可以避免数据的网络传输。通常来说,task可能不会被分配到它处理的数据所在的节点,因为这些节点可用的资源可能已经用尽,此时,Spark会等待一段时间,默认3s,如果等待指定时间后仍然无法在指定节点运行,那么会自动降级,尝试将task分配到比较差的本地化级别所对应的节点上,比如将task分配到离它要计算的数据比较近的一个节点,然后进行计算,如果当前级别仍然不行,那么继续降级。

当task要处理的数据不在task所在节点上时,会发生数据的传输。task会通过所在节点的BlockManager获取数据,BlockManager发现数据不在本地时,户通过网络传输组件从数据所在节点的BlockManager处获取数据。

网络传输数据的情况是我们不愿意看到的,大量的网络传输会严重影响性能,因此,我们希望通过调节本地化等待时长,如果在等待时长这段时间内,目标节点处理完成了一部分task,那么当前的task将有机会得到执行,这样就能够改善Spark作业的整体性能。

表2-3 Spark本地化等级

名称

解析

PROCESS_LOCAL

进程本地化,task和数据在同一个Executor中,性能最好。

NODE_LOCAL

节点本地化,task和数据在同一个节点中,但是task和数据不在同一个Executor中,数据需要在进程间进行传输。

RACK_LOCAL

机架本地化,task和数据在同一个机架的两个节点上,数据需要通过网络在节点之间进行传输。

NO_PREF

对于task来说,从哪里获取都一样,没有好坏之分。

ANY

task和数据可以在集群的任何地方,而且不在一个机架中,性能最差。

在Spark项目开发阶段,可以使用client模式对程序进行测试,此时,可以在本地看到比较全的日志信息,日志信息中有明确的task数据本地化的级别,如果大部分都是PROCESS_LOCAL,那么就无需进行调节,但是如果发现很多的级别都是NODE_LOCAL、ANY,那么需要对本地化的等待时长进行调节,通过延长本地化等待时长,看看task的本地化级别有没有提升,并观察Spark作业的运行时间有没有缩短。

注意,过犹不及,不要将本地化等待时长延长地过长,导致因为大量的等待时长,使得Spark作业的运行时间反而增加了。

val conf = new SparkConf()

  .set("spark.locality.wait", "")

Spark常规性能调优的更多相关文章

  1. Spark 常规性能调优

    1. 常规性能调优 一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性 ...

  2. Spark的性能调优杂谈

    下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. 基本概念和原则 <1>  每一台host上面可以并行N个worker,每一个worke ...

  3. Spark Streaming性能调优详解

    Spark Streaming性能调优详解 Spark  2015-04-28 7:43:05  7896℃  0评论 分享到微博   下载为PDF 2014 Spark亚太峰会会议资料下载.< ...

  4. Spark的性能调优

    下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. Data Serialization,默认使用的是Java Serialization,这个程序员 ...

  5. Spark Streaming性能调优详解(转)

    原文链接:Spark Streaming性能调优详解 Spark Streaming提供了高效便捷的流式处理模式,但是在有些场景下,使用默认的配置达不到最优,甚至无法实时处理来自外部的数据,这时候我们 ...

  6. Spark:性能调优

    来自:http://blog.csdn.net/u012102306/article/details/51637366 资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理 ...

  7. Spark Streaming性能调优

    数据接收并行度调优(一) 通过网络接收数据时(比如Kafka.Flume),会将数据反序列化,并存储在Spark的内存中.如果数据接收称为系统的瓶颈,那么可以考虑并行化数据接收.每一个输入DStrea ...

  8. Apache Spark Jobs 性能调优

    当你开始编写 Apache Spark 代码或者浏览公开的 API 的时候,你会遇到各种各样术语,比如transformation,action,RDD(resilient distributed d ...

  9. 【转载】Apache Spark Jobs 性能调优(二)

    调试资源分配   Spark 的用户邮件邮件列表中经常会出现 "我有一个500个节点的集群,为什么但是我的应用一次只有两个 task 在执行",鉴于 Spark 控制资源使用的参数 ...

随机推荐

  1. [EXP]CVE-2019-0604 Microsoft SharePoint RCE Exploit

    研表究明,汉字的序顺并不定一能影阅响读,比如当你看完这句话后,才发这现里的字全是都乱的. 剑桥大学的研究结果,当单词的字母顺序颠倒时,你仍旧可以明白整个单词的意思.其中重要的是:只要单词的第一个字母和 ...

  2. mybatis-plus-generator 模板生成代码

    maven: <dependencies> <dependency> <groupId>com.baomidou</groupId> <artif ...

  3. 【题解】Luogu P5471 [NOI2019]弹跳

    原题传送门 先考虑部分分做法: subtask1: 暴力\(O(nm)\)枚举,跑最短路 subtask2: 吧一行的点压到vector中并排序,二分查找每一个弹跳装置珂以到达的城市,跑最短路 sub ...

  4. 使用DbVisualizer 10.0.20 查询ES中的索引时需要注意的事项

    查询前5条数据 光标停在某一个查询结果框中,左下角会显示该字段的类型 查询类型是text的字段使用单引号,使用双引号查询会报错

  5. (7)ASP.NET Core 中的错误处理

    1.前言 ASP.NET Core处理错误环境区分为两种:开发环境和非开发环境.●开发环境:开发人员异常页.●非开发环境:异常处理程序页.状态代码页.在Startup.Configure方法里面我们会 ...

  6. centos lnmp一键安装

    安装 系统需求: 需要2 GB硬盘剩余空间 128M以上内存,OpenVZ的建议192MB以上(小内存请勿使用64位系统) Linux下区分大小写,输入命令时请注意! 安装步骤: 1.使用putty或 ...

  7. wps金山文档在线编辑--.Net 接入指南

    一.申请成为服务商,对金山文档在线服务进行申请 ①进入官网 https://open.wps.cn/ ②申请后如下图,点击右下角的进入服务 ③申请成功后 ④数据回调URL一定是服务器地址,本次我使用的 ...

  8. Spring AOP 复习

    Aspect Oriented Programming 通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术,利用aop可以对业务逻辑的各个部分进行隔离,从而使得业务逻辑各部分之间的耦合度降 ...

  9. Python与Golang对比

    一:前言 刚看了一篇软文,说什么“才华是改变人生最有效的途径”,反正呢,大体就是科技进步,要想一直在车上,就得不断的学习,刚好最近也准备学习Golang,最近火的不能在火了吧,刚好也有些Python基 ...

  10. SpringBoot构建RESTful API

    1.RESTful介绍 RESTful是一种软件架构风格! RESTful架构风格规定,数据的元操作,即CRUD(create, read, update和delete,即数据的增删查改)操作,分别对 ...