[LeetCode] 568. Maximum Vacation Days 最大化休假日
LeetCode wants to give one of its best employees the option to travel among N cities to collect algorithm problems. But all work and no play makes Jack a dull boy, you could take vacations in some particular cities and weeks. Your job is to schedule the traveling to maximize the number of vacation days you could take, but there are certain rules and restrictions you need to follow.
Rules and restrictions:
- You can only travel among N cities, represented by indexes from 0 to N-1. Initially, you are in the city indexed 0 on Monday.
- The cities are connected by flights. The flights are represented as a N*N matrix (not necessary symmetrical), called flights representing the airline status from the city i to the city j. If there is no flight from the city i to the city j, flights[i][j] = 0; Otherwise, flights[i][j] = 1. Also, flights[i][i] = 0 for all i.
- You totally have K weeks (each week has 7 days) to travel. You can only take flights at most once per day and can only take flights on each week's Monday morning. Since flight time is so short, we don't consider the impact of flight time.
- For each city, you can only have restricted vacation days in different weeks, given an N*K matrix called days representing this relationship. For the value of days[i][j], it represents the maximum days you could take vacation in the city i in the week j.
You're given the flights matrix and days matrix, and you need to output the maximum vacation days you could take during K weeks.
Example 1:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[1,3,1],[6,0,3],[3,3,3]]
Output: 12
Explanation:
Ans = 6 + 3 + 3 = 12.
One of the best strategies is:
1st week : fly from city 0 to city 1 on Monday, and play 6 days and work 1 day.
(Although you start at city 0, we could also fly to and start at other cities since it is Monday.)
2nd week : fly from city 1 to city 2 on Monday, and play 3 days and work 4 days.
3rd week : stay at city 2, and play 3 days and work 4 days.
Example 2:
Input:flights = [[0,0,0],[0,0,0],[0,0,0]], days = [[1,1,1],[7,7,7],[7,7,7]]
Output: 3
Explanation:
Ans = 1 + 1 + 1 = 3.
Since there is no flights enable you to move to another city, you have to stay at city 0 for the whole 3 weeks.
For each week, you only have one day to play and six days to work.
So the maximum number of vacation days is 3.
Example 3:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[7,0,0],[0,7,0],[0,0,7]]
Output: 21
Explanation:
Ans = 7 + 7 + 7 = 21
One of the best strategies is:
1st week : stay at city 0, and play 7 days.
2nd week : fly from city 0 to city 1 on Monday, and play 7 days.
3rd week : fly from city 1 to city 2 on Monday, and play 7 days.
Note:
- N and K are positive integers, which are in the range of [1, 100].
- In the matrix flights, all the values are integers in the range of [0, 1].
- In the matrix days, all the values are integers in the range [0, 7].
- You could stay at a city beyond the number of vacation days, but you should work on the extra days, which won't be counted as vacation days.
- If you fly from the city A to the city B and take the vacation on that day, the deduction towards vacation days will count towards the vacation days of city B in that week.
- We don't consider the impact of flight hours towards the calculation of vacation days.
flights是n*n矩阵, 表示city之间是否能飞; days[i][j] 是n*k矩阵,表示在city i,week j 这个时间最多能玩几天。初始是在city 0, 问最多能玩几天。注意的是第一周不一定非得在city 0, 可以当天飞到其他city开始。
解法1:DFS, 对每一个当前city,遍历所有它能到达的城市,返回当前week在cur_city能得到的最大值,days[i][week] + dfs(flights, days, i, week+1, data),通过打表data来保存中间值,不然会超时。
解法2:DP, 用dp[i][j]来表示 week i in city j, 最多可以得到多少个vacation。dp[i][j] = max(dp[i - 1][k] + days[j][i]) (k = 0...N - 1, if we can go from city k to city j)
Java: DFS
public class Solution {
int max = 0, N = 0, K = 0; public int maxVacationDays(int[][] flights, int[][] days) {
N = flights.length;
K = days[0].length;
dfs(flights, days, 0, 0, 0); return max;
} //curr: current city
private void dfs(int[][] f, int[][] d, int curr, int week, int sum) {
if (week == K) {
max = Math.max(max, sum);
return;
} for (int dest = 0; dest < N; dest++) {
if (curr == dest || f[curr][dest] == 1) {
dfs(f, d, dest, week + 1, sum + d[dest][week]);
}
}
}
}
Java: DP
public class Solution {
public int maxVacationDays(int[][] flights, int[][] days) {
int N = flights.length;
int K = days[0].length;
int[] dp = new int[N];
Arrays.fill(dp, Integer.MIN_VALUE);
dp[0] = 0; for (int i = 0; i < K; i++) {
int[] temp = new int[N];
Arrays.fill(temp, Integer.MIN_VALUE);
for (int j = 0; j < N; j++) {
for(int k = 0; k < N; k++) {
if (j == k || flights[k][j] == 1) {
temp[j] = Math.max(temp[j], dp[k] + days[j][i]);
}
}
}
dp = temp;
} int max = 0;
for (int v : dp) {
max = Math.max(max, v);
} return max;
}
}
Java: DP
public int maxVacationDays(int[][] flights, int[][] days) {
int N = flights.length, K = days[0].length;
int[] dp = new int[N];
for (int i=K-1;i>=0;i--) {
int[] temp = new int[N];
for (int j=0;j<N;j++) {
temp[j] = days[j][i];
int max = dp[j];
for (int n=0;n<N;n++)
if (flights[j][n] == 1) max = Math.max(max, dp[n]);
temp[j] += max;
}
dp = temp;
} int max = dp[0];
for (int i=0;i<N;i++)
if (flights[0][i] == 1) max = Math.max(max, dp[i]);
return max;
}
Python:
# Time: O(n^2 * k)
# Space: O(k)
class Solution(object):
def maxVacationDays(self, flights, days):
"""
:type flights: List[List[int]]
:type days: List[List[int]]
:rtype: int
"""
if not days or not flights:
return 0
dp = [[0] * len(days) for _ in xrange(2)]
for week in reversed(xrange(len(days[0]))):
for cur_city in xrange(len(days)):
dp[week % 2][cur_city] = days[cur_city][week] + dp[(week+1) % 2][cur_city]
for dest_city in xrange(len(days)):
if flights[cur_city][dest_city] == 1:
dp[week % 2][cur_city] = max(dp[week % 2][cur_city], \
days[dest_city][week] + dp[(week+1) % 2][dest_city])
return dp[0][0]
C++:
// Time: O(n^2 * k)
// Space: O(k)
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
if (days.empty() || flights.empty()) {
return 0;
}
vector<vector<int>> dp(2, vector<int>(days.size()));
for (int week = days[0].size() - 1; week >= 0; --week) {
for (int cur_city = 0; cur_city < days.size(); ++cur_city) {
dp[week % 2][cur_city] = days[cur_city][week] + dp[(week + 1) % 2][cur_city];
for (int dest_city = 0; dest_city < days.size(); ++dest_city) {
if (flights[cur_city][dest_city] == 1) {
dp[week % 2][cur_city] = max(dp[week % 2][cur_city],
days[dest_city][week] + dp[(week + 1) % 2][dest_city]);
}
}
}
}
return dp[0][0];
}
};
C++:
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int n = flights.size(), k = days[0].size(), res = 0;
vector<vector<int>> dp(n, vector<int>(k, 0));
for (int j = k - 1; j >= 0; --j) {
for (int i = 0; i < n; ++i) {
dp[i][j] = days[i][j];
for (int p = 0; p < n; ++p) {
if ((i == p || flights[i][p]) && j < k - 1) {
dp[i][j] = max(dp[i][j], dp[p][j + 1] + days[i][j]);
}
if (j == 0 && (i == 0 || flights[0][i])) res = max(res, dp[i][0]);
}
}
}
return res;
}
};
C++:
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int n = flights.size(), k = days[0].size();
vector<int> dp(n, INT_MIN);
dp[0] = 0;
for (int j = 0; j < k; ++j) {
vector<int> t(n, INT_MIN);
for (int i = 0; i < n; ++i) {
for (int p = 0; p < n; ++p) {
if (i == p || flights[p][i]) {
t[i] = max(t[i], dp[p] + days[i][j]);
}
}
}
dp = t;
}
return *max_element(dp.begin(), dp.end());
}
};
All LeetCode Questions List 题目汇总
[LeetCode] 568. Maximum Vacation Days 最大化休假日的更多相关文章
- [LeetCode] Maximum Vacation Days 最大化休假日
LeetCode wants to give one of its best employees the option to travel among N cities to collect algo ...
- LeetCode 568. Maximum Vacation Days
原题链接在这里:https://leetcode.com/problems/maximum-vacation-days/ 题目: LeetCode wants to give one of its b ...
- 568. Maximum Vacation Days
Problem statement: LeetCode wants to give one of its best employees the option to travel among N ci ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- [LeetCode] 152. Maximum Product Subarray_Medium tag: Dynamic Programming
Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- [LeetCode] 325. Maximum Size Subarray Sum Equals k 和等于k的最长子数组
Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If t ...
- [LeetCode] 628. Maximum Product of Three Numbers 三个数字的最大乘积
Given an integer array, find three numbers whose product is maximum and output the maximum product. ...
- [LeetCode] Third Maximum Number 第三大的数
Given a non-empty array of integers, return the third maximum number in this array. If it does not e ...
随机推荐
- linux下安装cryptography兼论查找合适pip的whl文件技巧
cryptography这个包,如果源码安装,需要GCC之类的编译,在生产环境不太现实. 所以选择了whl文件安装. 但在官方提供的whl文件里,没有我们熟悉的cp36-cp36m这样的命名文件,肿么 ...
- 大数据之路week07--day07 (Hive结构设计以及Hive语法)
Hive架构流程(十分重要,结合图进行记忆理解)当客户端提交请求,它先提交到Driver,Driver拿到这个请求后,先把表明,字段名拿出来,去数据库进行元数据验证,也就是Metasore,如果有,返 ...
- wordpress调用指定post type文章怎么操作
我们有时会用wordpress创建好几种post type文章,比如默认的post文章和product文章,如果我们要在每个页面的底部调用post type类型为post最新文章要如何操作呢?那我们就 ...
- MSSQL行车列规则
行转列,是SQL中经常会遇到的一个问题,并且分为静态转换和动态转换,所谓静态转换即在转换的行数已知或固定:动态转换则为转换的行数不固定. 转换的方法一般采用case when语句或pivot(MSSQ ...
- Codeforces Round #605 (Div. 3) C. Yet Another Broken Keyboard
链接: https://codeforces.com/contest/1272/problem/C 题意: Recently, Norge found a string s=s1s2-sn consi ...
- 按值传递与按值引用详解(java版)
http://blog.csdn.net/zzp_403184692/article/details/8184751
- vue 项目的文件/文件夹上传下载
前言:因自己负责的项目(jetty内嵌启动的SpringMvc)中需要实现文件上传,而自己对java文件上传这一块未接触过,且对 Http 协议较模糊,故这次采用渐进的方式来学习文件上传的原理与实践. ...
- WinDbg常用命令系列---线程相关操作~*
~ (Thread Status) 波浪符(~)命令显示指定线程或当前进程中所有线程的状态. ~ Thread 参数: Thread指定要显示的线程.如果省略此参数,将显示所有线程. 环境: 模式 仅 ...
- 9-ESP8266 SDK开发基础入门篇--编写串口上位机软件
https://www.cnblogs.com/yangfengwu/p/11087613.html 页面修改成这样子 现在看串口发送数据 点击点亮 发送0xaa 0x55 0 ...
- 洛谷 P4316绿豆蛙的归宿
题目描述 记f[i]表示经过i号点的概率. 那么点v从点u到达的概率=经过点u的概率/点u的出度.由于v可以由多个点走到,所以f[v]+=f[u]/out[u]. 计算f的过程可以在拓扑中完成,同时可 ...