[LeetCode] 568. Maximum Vacation Days 最大化休假日
LeetCode wants to give one of its best employees the option to travel among N cities to collect algorithm problems. But all work and no play makes Jack a dull boy, you could take vacations in some particular cities and weeks. Your job is to schedule the traveling to maximize the number of vacation days you could take, but there are certain rules and restrictions you need to follow.
Rules and restrictions:
- You can only travel among N cities, represented by indexes from 0 to N-1. Initially, you are in the city indexed 0 on Monday.
- The cities are connected by flights. The flights are represented as a N*N matrix (not necessary symmetrical), called flights representing the airline status from the city i to the city j. If there is no flight from the city i to the city j, flights[i][j] = 0; Otherwise, flights[i][j] = 1. Also, flights[i][i] = 0 for all i.
- You totally have K weeks (each week has 7 days) to travel. You can only take flights at most once per day and can only take flights on each week's Monday morning. Since flight time is so short, we don't consider the impact of flight time.
- For each city, you can only have restricted vacation days in different weeks, given an N*K matrix called days representing this relationship. For the value of days[i][j], it represents the maximum days you could take vacation in the city i in the week j.
You're given the flights matrix and days matrix, and you need to output the maximum vacation days you could take during K weeks.
Example 1:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[1,3,1],[6,0,3],[3,3,3]]
Output: 12
Explanation:
Ans = 6 + 3 + 3 = 12.
One of the best strategies is:
1st week : fly from city 0 to city 1 on Monday, and play 6 days and work 1 day.
(Although you start at city 0, we could also fly to and start at other cities since it is Monday.)
2nd week : fly from city 1 to city 2 on Monday, and play 3 days and work 4 days.
3rd week : stay at city 2, and play 3 days and work 4 days.
Example 2:
Input:flights = [[0,0,0],[0,0,0],[0,0,0]], days = [[1,1,1],[7,7,7],[7,7,7]]
Output: 3
Explanation:
Ans = 1 + 1 + 1 = 3.
Since there is no flights enable you to move to another city, you have to stay at city 0 for the whole 3 weeks.
For each week, you only have one day to play and six days to work.
So the maximum number of vacation days is 3.
Example 3:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[7,0,0],[0,7,0],[0,0,7]]
Output: 21
Explanation:
Ans = 7 + 7 + 7 = 21
One of the best strategies is:
1st week : stay at city 0, and play 7 days.
2nd week : fly from city 0 to city 1 on Monday, and play 7 days.
3rd week : fly from city 1 to city 2 on Monday, and play 7 days.
Note:
- N and K are positive integers, which are in the range of [1, 100].
- In the matrix flights, all the values are integers in the range of [0, 1].
- In the matrix days, all the values are integers in the range [0, 7].
- You could stay at a city beyond the number of vacation days, but you should work on the extra days, which won't be counted as vacation days.
- If you fly from the city A to the city B and take the vacation on that day, the deduction towards vacation days will count towards the vacation days of city B in that week.
- We don't consider the impact of flight hours towards the calculation of vacation days.
flights是n*n矩阵, 表示city之间是否能飞; days[i][j] 是n*k矩阵,表示在city i,week j 这个时间最多能玩几天。初始是在city 0, 问最多能玩几天。注意的是第一周不一定非得在city 0, 可以当天飞到其他city开始。
解法1:DFS, 对每一个当前city,遍历所有它能到达的城市,返回当前week在cur_city能得到的最大值,days[i][week] + dfs(flights, days, i, week+1, data),通过打表data来保存中间值,不然会超时。
解法2:DP, 用dp[i][j]来表示 week i in city j, 最多可以得到多少个vacation。dp[i][j] = max(dp[i - 1][k] + days[j][i]) (k = 0...N - 1, if we can go from city k to city j)
Java: DFS
public class Solution {
int max = 0, N = 0, K = 0; public int maxVacationDays(int[][] flights, int[][] days) {
N = flights.length;
K = days[0].length;
dfs(flights, days, 0, 0, 0); return max;
} //curr: current city
private void dfs(int[][] f, int[][] d, int curr, int week, int sum) {
if (week == K) {
max = Math.max(max, sum);
return;
} for (int dest = 0; dest < N; dest++) {
if (curr == dest || f[curr][dest] == 1) {
dfs(f, d, dest, week + 1, sum + d[dest][week]);
}
}
}
}
Java: DP
public class Solution {
public int maxVacationDays(int[][] flights, int[][] days) {
int N = flights.length;
int K = days[0].length;
int[] dp = new int[N];
Arrays.fill(dp, Integer.MIN_VALUE);
dp[0] = 0; for (int i = 0; i < K; i++) {
int[] temp = new int[N];
Arrays.fill(temp, Integer.MIN_VALUE);
for (int j = 0; j < N; j++) {
for(int k = 0; k < N; k++) {
if (j == k || flights[k][j] == 1) {
temp[j] = Math.max(temp[j], dp[k] + days[j][i]);
}
}
}
dp = temp;
} int max = 0;
for (int v : dp) {
max = Math.max(max, v);
} return max;
}
}
Java: DP
public int maxVacationDays(int[][] flights, int[][] days) {
int N = flights.length, K = days[0].length;
int[] dp = new int[N];
for (int i=K-1;i>=0;i--) {
int[] temp = new int[N];
for (int j=0;j<N;j++) {
temp[j] = days[j][i];
int max = dp[j];
for (int n=0;n<N;n++)
if (flights[j][n] == 1) max = Math.max(max, dp[n]);
temp[j] += max;
}
dp = temp;
} int max = dp[0];
for (int i=0;i<N;i++)
if (flights[0][i] == 1) max = Math.max(max, dp[i]);
return max;
}
Python:
# Time: O(n^2 * k)
# Space: O(k)
class Solution(object):
def maxVacationDays(self, flights, days):
"""
:type flights: List[List[int]]
:type days: List[List[int]]
:rtype: int
"""
if not days or not flights:
return 0
dp = [[0] * len(days) for _ in xrange(2)]
for week in reversed(xrange(len(days[0]))):
for cur_city in xrange(len(days)):
dp[week % 2][cur_city] = days[cur_city][week] + dp[(week+1) % 2][cur_city]
for dest_city in xrange(len(days)):
if flights[cur_city][dest_city] == 1:
dp[week % 2][cur_city] = max(dp[week % 2][cur_city], \
days[dest_city][week] + dp[(week+1) % 2][dest_city])
return dp[0][0]
C++:
// Time: O(n^2 * k)
// Space: O(k)
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
if (days.empty() || flights.empty()) {
return 0;
}
vector<vector<int>> dp(2, vector<int>(days.size()));
for (int week = days[0].size() - 1; week >= 0; --week) {
for (int cur_city = 0; cur_city < days.size(); ++cur_city) {
dp[week % 2][cur_city] = days[cur_city][week] + dp[(week + 1) % 2][cur_city];
for (int dest_city = 0; dest_city < days.size(); ++dest_city) {
if (flights[cur_city][dest_city] == 1) {
dp[week % 2][cur_city] = max(dp[week % 2][cur_city],
days[dest_city][week] + dp[(week + 1) % 2][dest_city]);
}
}
}
}
return dp[0][0];
}
};
C++:
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int n = flights.size(), k = days[0].size(), res = 0;
vector<vector<int>> dp(n, vector<int>(k, 0));
for (int j = k - 1; j >= 0; --j) {
for (int i = 0; i < n; ++i) {
dp[i][j] = days[i][j];
for (int p = 0; p < n; ++p) {
if ((i == p || flights[i][p]) && j < k - 1) {
dp[i][j] = max(dp[i][j], dp[p][j + 1] + days[i][j]);
}
if (j == 0 && (i == 0 || flights[0][i])) res = max(res, dp[i][0]);
}
}
}
return res;
}
};
C++:
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int n = flights.size(), k = days[0].size();
vector<int> dp(n, INT_MIN);
dp[0] = 0;
for (int j = 0; j < k; ++j) {
vector<int> t(n, INT_MIN);
for (int i = 0; i < n; ++i) {
for (int p = 0; p < n; ++p) {
if (i == p || flights[p][i]) {
t[i] = max(t[i], dp[p] + days[i][j]);
}
}
}
dp = t;
}
return *max_element(dp.begin(), dp.end());
}
};
All LeetCode Questions List 题目汇总
[LeetCode] 568. Maximum Vacation Days 最大化休假日的更多相关文章
- [LeetCode] Maximum Vacation Days 最大化休假日
LeetCode wants to give one of its best employees the option to travel among N cities to collect algo ...
- LeetCode 568. Maximum Vacation Days
原题链接在这里:https://leetcode.com/problems/maximum-vacation-days/ 题目: LeetCode wants to give one of its b ...
- 568. Maximum Vacation Days
Problem statement: LeetCode wants to give one of its best employees the option to travel among N ci ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- [LeetCode] 152. Maximum Product Subarray_Medium tag: Dynamic Programming
Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- [LeetCode] 325. Maximum Size Subarray Sum Equals k 和等于k的最长子数组
Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If t ...
- [LeetCode] 628. Maximum Product of Three Numbers 三个数字的最大乘积
Given an integer array, find three numbers whose product is maximum and output the maximum product. ...
- [LeetCode] Third Maximum Number 第三大的数
Given a non-empty array of integers, return the third maximum number in this array. If it does not e ...
随机推荐
- 《Maven在Java项目开发中的应用》论文笔记(十七)
标题:Maven在Java项目开发中的应用 一.基本信息 时间:2019 来源:山西农业大学 关键词:Maven:Java Web:仓库:开发人员:极限编程; 二.研究内容 1.Maven 基本原理概 ...
- 项目Alpha冲刺(团队) -- 测试
项目Alpha冲刺(团队) --测试 1.团队信息 团队名 :男上加男 成员信息 : 队员学号 队员姓名 个人博客地址 备注 221600427 Alicesft https://www.cnblog ...
- Python爬虫爬企查查数据
因为制作B2b网站需要,需要入库企业信息数据.所以目光锁定企查查数据,废话不多说,开干! #-*- coding-8 -*- import requests import lxml import sy ...
- wordpress调用指定post type文章怎么操作
我们有时会用wordpress创建好几种post type文章,比如默认的post文章和product文章,如果我们要在每个页面的底部调用post type类型为post最新文章要如何操作呢?那我们就 ...
- Backpressure & Elastic Scaling
spark.streaming从不稳定到稳定状态,解决数据量接收数据时突然变大,使得无法及时处理数据,稳定性得到保证 开启方式: spark.streaming.backpressure.enable ...
- 使用postman上传excel文件测试导入excel
今日思语:城市的生活很快,有时学会让自己慢下来,慢慢来 对于做一些文件上传操作时,一般我们是直接在前端页面加入类型为file的input标签,也可以使用postman来进行文件的上传测试,如下: po ...
- MySQL备份的三中方式
一.备份的目的 做灾难恢复:对损坏的数据进行恢复和还原需求改变:因需求改变而需要把数据还原到改变以前测试:测试新功能是否可用 二.备份需要考虑的问题 可以容忍丢失多长时间的数据:恢复数据要在多长时间内 ...
- 微信硬件平台(十) 1 ESP8266通过mqtt交互消息
//----------------------------------------------------------------------------------------// //----- ...
- “OKR播种机”JOHN DOERR–目标是对抗纷乱思绪的一针疫苗
OKR培养出疯狂的想法,再加上对的人,奇迹就会出现 约翰·杜尔是美国最有影响力.最具创意.最不拘传统的冒险资本投资家之一.在短短10年内创造了高达1,000亿美元的经济价值.迄今为止,他已向 250家 ...
- P4279 【[SHOI2008]小约翰的游戏】
我怎么什么都不会啊\(QAQ\)博弈论怎么和期望一样玄学啊\(QAQ\) 我们分几种情况讨论: \(Case1\):只有一堆且为1,那么后手胜利 \(Case2\):每一堆都是1,那么只需要判断奇偶性 ...