The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices. 
— It is a matter of security to change such things every now and then, to keep the enemy in the dark. 
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know! 
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door. 
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime! 
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds. 
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.

Now, the minister of finance, who had been eavesdropping, intervened. 
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound. 
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you? 
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.

1033 
1733 
3733 
3739 
3779 
8779 
8179

The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

Output

One line for each case, either with a number stating the minimal cost or containing the word Impossible.

Sample Input

3
1033 8179
1373 8017
1033 1033

Sample Output

6
7
0   题目大意:n组输入,每一组输入两个四位质数,对第一个质数进行转换,使之变为第二个质数,每次只能更改一个数中某一位的数,且变动一位后的数也是质数才符合要求。输出最
少经过几次转换,能转换成第二个质数,保证输入合法。
  思路:我这里采用了比较笨的方法,用结构体存储每一位上的数,以及总数,建立结构体队列,进行广度优先搜索,通过数组存储转换次数信息。(主要是自己比较菜,获取某个
数中每一位的数不够熟练,后续会补上用整型解决问题的思路。)还有一个问题是判断某数是否为质数的函数,这里我参考了大佬的博客(https://blog.csdn.net/huang_miao_xin/article/details/51331710),
很巧妙的判断质数的算法,值得学习。代码如下:
#include <iostream>
#include <algorithm>
#include <math.h>
#include <queue>
#include <string.h>
int const max_n = ;
using namespace std;
int jug[max_n];//记录信息数组
struct node {
int a, b, c, d;//千位,百位,十位,个位
int sum;//数的大小
};
queue<node> q;
int test(node x)//由各个数位的数求大小
{
return x.a * + x.b * + x.c * + x.d;
}
bool judge(int x)//是否为质数
{//关于这种方法判断质数的解释,6x,6x+2,6x+4一定被2整除,6x+3一定被3整除,这样就只用判断6x+1和6x+5的数了。而当循环以6位单位跨进时,就是6x-1和6x+1的情况了。更详细的讲解可以去大佬博客看
if (x == || x == )return true;//特判2,3两个质数
if (x % != && x % != )return false;
int tmp = sqrt(x);
for (int i = ; i <= tmp; i += )
{
if (x%i == || x % (i + ) == )return false;
}
return true;
}
int bfs(int x, int y)
{
node sx;
sx.a = x / ;
sx.b = x / % ;
sx.c = x / % % ;
sx.d = x % % % ;
sx.sum = x;
q.push(sx);//入队
memset(jug, , sizeof(jug));
jug[x] = ;
while (!q.empty())
{
node s = q.front(); q.pop();
if (s.sum == y)return jug[s.sum] - ;
for (int i = ; i < ; i++)//千位进行转换
{
node p;
p.a = s.a, p.b = s.b, p.c = s.c, p.d = s.d;
p.a = i;
p.sum = test(p);
if (judge(p.sum) && jug[p.sum] == )
{
jug[p.sum] = jug[s.sum] + ;
q.push(p);
}
}
for (int i = ; i < ; i++)//百位进行转换
{
node p;
p.a = s.a, p.b = s.b, p.c = s.c, p.d = s.d;
p.b = i;
p.sum = test(p);
if (judge(p.sum) && jug[p.sum] == )
{
jug[p.sum] = jug[s.sum] + ;
q.push(p);
}
}
for (int i = ; i < ; i++)//十位进行转换
{
node p;
p.a = s.a, p.b = s.b, p.c = s.c, p.d = s.d;
p.c = i;
p.sum = test(p);
if (judge(p.sum) && jug[p.sum] == )
{
jug[p.sum] = jug[s.sum] + ;
q.push(p);
}
}
for (int i = ; i < ; i++)//个位进行转换
{
node p;
p.a = s.a, p.b = s.b, p.c = s.c, p.d = s.d;
p.d = i;
p.sum = test(p);
if (judge(p.sum) && jug[p.sum] == )
{
jug[p.sum] = jug[s.sum] + ;
q.push(p);
} }
}
return ;
}
int main()
{
int t; scanf("%d", &t);
while (t--)
{
int m, n;
scanf("%d %d", &m, &n);
while (q.size())q.pop();
if (m == n) { printf("0\n"); continue; }
else
{
int x = bfs(m, n);
if (x == )printf("Impossible\n");
else printf("%d\n", x);
}
}
return ;
}
 

Prime Path POJ-3126的更多相关文章

  1. Prime Path(POJ - 3126)【BFS+筛素数】

    Prime Path(POJ - 3126) 题目链接 算法 BFS+筛素数打表 1.题目主要就是给定你两个四位数的质数a,b,让你计算从a变到b共最小需要多少步.要求每次只能变1位,并且变1位后仍然 ...

  2. Mathematics:Prime Path(POJ 3126)

    素数通道 题目大意:给定两个素数a,b,要你找到一种变换,使得每次变换都是素数,如果能从a变换到b,则输出最小步数,否则输出Impossible 水题,因为要求最小步数,所以我们只需要找到到每个素数的 ...

  3. kuangbin专题 专题一 简单搜索 Prime Path POJ - 3126

    题目链接:https://vjudge.net/problem/POJ-3126 题意:给你两个四位的素数N,M,每次改变N四位数中的其中一位,如果能经过有限次数的替换变成四位数M,那么求出最少替换次 ...

  4. POJ - 3126 - Prime Path(BFS)

    Prime Path POJ - 3126 题意: 给出两个四位素数 a , b.然后从a开始,每次可以改变四位中的一位数字,变成 c,c 可以接着变,直到变成b为止.要求 c 必须是素数.求变换次数 ...

  5. 双向广搜 POJ 3126 Prime Path

      POJ 3126  Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16204   Accepted ...

  6. poj 3126 Prime Path bfs

    题目链接:http://poj.org/problem?id=3126 Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  7. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

  8. BFS POJ 3126 Prime Path

    题目传送门 /* 题意:从一个数到另外一个数,每次改变一个数字,且每次是素数 BFS:先预处理1000到9999的素数,简单BFS一下.我没输出Impossible都AC,数据有点弱 */ /**** ...

  9. Prime Path(poj 3126)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  10. Prime Path(POJ 3126 BFS)

    Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15325   Accepted: 8634 Descr ...

随机推荐

  1. php访问者模式(visitor design)

    终于搞定,累成一滩,今晚不想说话. <?php /* The visitor design pattern is a way of separating an algorithm from an ...

  2. Codeforces Round #579 (Div. 3)

    Codeforces Round #579 (Div. 3) 传送门 A. Circle of Students 这题我是直接把正序.逆序的两种放在数组里面直接判断. Code #include &l ...

  3. Discuz!开发之模板标签语法学习

    一.加载模板 使用template()函数显示已存在模板: 在Discuz!程序执行中可以通过 include template('模板文件夹/模板名称无后缀');的方式进行解析! template( ...

  4. 将python项目.py文件打包成.exe文件

    安装pyinstaller包 pip3 install pyinstaller 如果不行 pip3 install pyinstaller -i https://pypi.doubanio.com/s ...

  5. win10 下安装 ZooKeeper 的方法

    ZooKeeper 下载地址: https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/ 1 随便解压到一个目录 2 在 zookeeper-3.x ...

  6. 生成随机验证码,上传图片文件,解析HTML

    1.生成随机图片验证码 1.1 页面调用createvalidatecode 生成随机图片验证码方法: <div class="inputLine"><label ...

  7. java 获取类路径

    package com.jason.test; import java.io.File; import java.io.IOException; import java.net.URL; public ...

  8. python 关于celery的定时任务队列的基本使用(celery+redis)【采用配置文件设置】

    工程结构沿用https://www.cnblogs.com/apple2016/p/11422388.html,只需修改celeryconfig.py文件即可: 1.更新celeyconfig.py文 ...

  9. Cmder下ssh免密登录配置

    1.本地生成ssh-key 在本地cmder终端下运行下面的命令生成ssh的公钥和私钥文件: ssh-keygen -t rsa 其中,.ssh/id_rsa为私钥文件,留在本地使用,而.ssh/id ...

  10. Maven -------------- Eclipse 安装maven ,配置setting文件

    1.设置maven路径 Window->Preferences->Maven->Installations-> 选择maven的路径,如果原来有低版本的建议删除 选择好后点击f ...