telegraf 是influxdata 开发的一个插件驱动的服务器代理,可以方便的用来收集以及报告系统的metrics

我使用mac 系统,测试安装使用了brew

安装

  • 下载地址

    说明官方也提供了mac版本

https://github.com/influxdata/telegraf/releases

  • linux 系统安装
    下载对应版本即可
  • mac 系统安装
 
 brew update
 brew install telegraf

基本使用

  • 生成运行配置文件
    安装好的二进制文件已经包含了生成配置文件的命令,,以下是一个简单的采集cpu 、内存使用情况的,同时输出到
    influxdb
 
telegraf -sample-config -input-filter cpu:mem -output-filter influxdb > telegraf.conf
 

内容如下:

# Telegraf Configuration
#
# Telegraf is entirely plugin driven. All metrics are gathered from the
# declared inputs, and sent to the declared outputs.
#
# Plugins must be declared in here to be active.
# To deactivate a plugin, comment out the name and any variables.
#
# Use 'telegraf -config telegraf.conf -test' to see what metrics a config
# file would generate.
#
# Environment variables can be used anywhere in this config file, simply surround
# them with ${}. For strings the variable must be within quotes (ie, "${STR_VAR}"),
# for numbers and booleans they should be plain (ie, ${INT_VAR}, ${BOOL_VAR})
# Global tags can be specified here in key="value" format.
[global_tags]
  # dc = "us-east-1" # will tag all metrics with dc=us-east-1
  # rack = "1a"
  ## Environment variables can be used as tags, and throughout the config file
  # user = "$USER"
# Configuration for telegraf agent
[agent]
  ## Default data collection interval for all inputs
  interval = "10s"
  ## Rounds collection interval to 'interval'
  ## ie, if interval="10s" then always collect on :00, :10, :20, etc.
  round_interval = true
  ## Telegraf will send metrics to outputs in batches of at most
  ## metric_batch_size metrics.
  ## This controls the size of writes that Telegraf sends to output plugins.
  metric_batch_size = 1000
  ## Maximum number of unwritten metrics per output.
  metric_buffer_limit = 10000
  ## Collection jitter is used to jitter the collection by a random amount.
  ## Each plugin will sleep for a random time within jitter before collecting.
  ## This can be used to avoid many plugins querying things like sysfs at the
  ## same time, which can have a measurable effect on the system.
  collection_jitter = "0s"
  ## Default flushing interval for all outputs. Maximum flush_interval will be
  ## flush_interval + flush_jitter
  flush_interval = "10s"
  ## Jitter the flush interval by a random amount. This is primarily to avoid
  ## large write spikes for users running a large number of telegraf instances.
  ## ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s
  flush_jitter = "0s"
  ## By default or when set to "0s", precision will be set to the same
  ## timestamp order as the collection interval, with the maximum being 1s.
  ##   ie, when interval = "10s", precision will be "1s"
  ##       when interval = "250ms", precision will be "1ms"
  ## Precision will NOT be used for service inputs. It is up to each individual
  ## service input to set the timestamp at the appropriate precision.
  ## Valid time units are "ns", "us" (or "µs"), "ms", "s".
  precision = ""
  ## Log at debug level.
  # debug = false
  ## Log only error level messages.
  # quiet = false
  ## Log file name, the empty string means to log to stderr.
  # logfile = ""
  ## The logfile will be rotated after the time interval specified.  When set
  ## to 0 no time based rotation is performed.
  # logfile_rotation_interval = "0d"
  ## The logfile will be rotated when it becomes larger than the specified
  ## size.  When set to 0 no size based rotation is performed.
  # logfile_rotation_max_size = "0MB"
  ## Maximum number of rotated archives to keep, any older logs are deleted.
  ## If set to -1, no archives are removed.
  # logfile_rotation_max_archives = 5
  ## Override default hostname, if empty use os.Hostname()
  hostname = ""
  ## If set to true, do no set the "host" tag in the telegraf agent.
  omit_hostname = false
###############################################################################
#                            OUTPUT PLUGINS                                   #
###############################################################################
# Configuration for sending metrics to InfluxDB
[[outputs.influxdb]]
  ## The full HTTP or UDP URL for your InfluxDB instance.
  ##
  ## Multiple URLs can be specified for a single cluster, only ONE of the
  ## urls will be written to each interval.
  # urls = ["unix:///var/run/influxdb.sock"]
  # urls = ["udp://127.0.0.1:8089"]
  # urls = ["http://127.0.0.1:8086"]
  ## The target database for metrics; will be created as needed.
  ## For UDP url endpoint database needs to be configured on server side.
  # database = "telegraf"
  ## The value of this tag will be used to determine the database.  If this
  ## tag is not set the 'database' option is used as the default.
  # database_tag = ""
  ## If true, no CREATE DATABASE queries will be sent.  Set to true when using
  ## Telegraf with a user without permissions to create databases or when the
  ## database already exists.
  # skip_database_creation = false
  ## Name of existing retention policy to write to.  Empty string writes to
  ## the default retention policy.  Only takes effect when using HTTP.
  # retention_policy = ""
  ## Write consistency (clusters only), can be: "any", "one", "quorum", "all".
  ## Only takes effect when using HTTP.
  # write_consistency = "any"
  ## Timeout for HTTP messages.
  # timeout = "5s"
  ## HTTP Basic Auth
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"
  ## HTTP User-Agent
  # user_agent = "telegraf"
  ## UDP payload size is the maximum packet size to send.
  # udp_payload = "512B"
  ## Optional TLS Config for use on HTTP connections.
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false
  ## HTTP Proxy override, if unset values the standard proxy environment
  ## variables are consulted to determine which proxy, if any, should be used.
  # http_proxy = "http://corporate.proxy:3128"
  ## Additional HTTP headers
  # http_headers = {"X-Special-Header" = "Special-Value"}
  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "identity"
  ## When true, Telegraf will output unsigned integers as unsigned values,
  ## i.e.: "42u".  You will need a version of InfluxDB supporting unsigned
  ## integer values.  Enabling this option will result in field type errors if
  ## existing data has been written.
  # influx_uint_support = false
###############################################################################
#                            PROCESSOR PLUGINS                                #
###############################################################################
# # Convert values to another metric value type
# [[processors.converter]]
#   ## Tags to convert
#   ##
#   ## The table key determines the target type, and the array of key-values
#   ## select the keys to convert.  The array may contain globs.
#   ##   <target-type> = [<tag-key>...]
#   [processors.converter.tags]
#     string = []
#     integer = []
#     unsigned = []
#     boolean = []
#     float = []
#
#   ## Fields to convert
#   ##
#   ## The table key determines the target type, and the array of key-values
#   ## select the keys to convert.  The array may contain globs.
#   ##   <target-type> = [<field-key>...]
#   [processors.converter.fields]
#     tag = []
#     string = []
#     integer = []
#     unsigned = []
#     boolean = []
#     float = []
# # Map enum values according to given table.
# [[processors.enum]]
#   [[processors.enum.mapping]]
#     ## Name of the field to map
#     field = "status"
#
#     ## Name of the tag to map
#     # tag = "status"
#
#     ## Destination tag or field to be used for the mapped value.  By default the
#     ## source tag or field is used, overwriting the original value.
#     dest = "status_code"
#
#     ## Default value to be used for all values not contained in the mapping
#     ## table.  When unset, the unmodified value for the field will be used if no
#     ## match is found.
#     # default = 0
#
#     ## Table of mappings
#     [processors.enum.mapping.value_mappings]
#       green = 1
#       amber = 2
#       red = 3
# # Apply metric modifications using override semantics.
# [[processors.override]]
#   ## All modifications on inputs and aggregators can be overridden:
#   # name_override = "new_name"
#   # name_prefix = "new_name_prefix"
#   # name_suffix = "new_name_suffix"
#
#   ## Tags to be added (all values must be strings)
#   # [processors.override.tags]
#   #   additional_tag = "tag_value"
# # Parse a value in a specified field/tag(s) and add the result in a new metric
# [[processors.parser]]
#   ## The name of the fields whose value will be parsed.
#   parse_fields = []
#
#   ## If true, incoming metrics are not emitted.
#   drop_original = false
#
#   ## If set to override, emitted metrics will be merged by overriding the
#   ## original metric using the newly parsed metrics.
#   merge = "override"
#
#   ## The dataformat to be read from files
#   ## Each data format has its own unique set of configuration options, read
#   ## more about them here:
#   ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
#   data_format = "influx"
# # Print all metrics that pass through this filter.
# [[processors.printer]]
# # Transforms tag and field values with regex pattern
# [[processors.regex]]
#   ## Tag and field conversions defined in a separate sub-tables
#   # [[processors.regex.tags]]
#   #   ## Tag to change
#   #   key = "resp_code"
#   #   ## Regular expression to match on a tag value
#   #   pattern = "^(\\d)\\d\\d$"
#   #   ## Pattern for constructing a new value (${1} represents first subgroup)
#   #   replacement = "${1}xx"
#
#   # [[processors.regex.fields]]
#   #   key = "request"
#   #   ## All the power of the Go regular expressions available here
#   #   ## For example, named subgroups
#   #   pattern = "^/api(?P<method>/[\\w/]+)\\S*"
#   #   replacement = "${method}"
#   #   ## If result_key is present, a new field will be created
#   #   ## instead of changing existing field
#   #   result_key = "method"
#
#   ## Multiple conversions may be applied for one field sequentially
#   ## Let's extract one more value
#   # [[processors.regex.fields]]
#   #   key = "request"
#   #   pattern = ".*category=(\\w+).*"
#   #   replacement = "${1}"
#   #   result_key = "search_category"
# # Rename measurements, tags, and fields that pass through this filter.
# [[processors.rename]]
# # Perform string processing on tags, fields, and measurements
# [[processors.strings]]
#   ## Convert a tag value to uppercase
#   # [[processors.strings.uppercase]]
#   #   tag = "method"
#
#   ## Convert a field value to lowercase and store in a new field
#   # [[processors.strings.lowercase]]
#   #   field = "uri_stem"
#   #   dest = "uri_stem_normalised"
#
#   ## Trim leading and trailing whitespace using the default cutset
#   # [[processors.strings.trim]]
#   #   field = "message"
#
#   ## Trim leading characters in cutset
#   # [[processors.strings.trim_left]]
#   #   field = "message"
#   #   cutset = "\t"
#
#   ## Trim trailing characters in cutset
#   # [[processors.strings.trim_right]]
#   #   field = "message"
#   #   cutset = "\r\n"
#
#   ## Trim the given prefix from the field
#   # [[processors.strings.trim_prefix]]
#   #   field = "my_value"
#   #   prefix = "my_"
#
#   ## Trim the given suffix from the field
#   # [[processors.strings.trim_suffix]]
#   #   field = "read_count"
#   #   suffix = "_count"
#
#   ## Replace all non-overlapping instances of old with new
#   # [[processors.strings.replace]]
#   #   measurement = "*"
#   #   old = ":"
#   #   new = "_"
# # Print all metrics that pass through this filter.
# [[processors.topk]]
#   ## How many seconds between aggregations
#   # period = 10
#
#   ## How many top metrics to return
#   # k = 10
#
#   ## Over which tags should the aggregation be done. Globs can be specified, in
#   ## which case any tag matching the glob will aggregated over. If set to an
#   ## empty list is no aggregation over tags is done
#   # group_by = ['*']
#
#   ## Over which fields are the top k are calculated
#   # fields = ["value"]
#
#   ## What aggregation to use. Options: sum, mean, min, max
#   # aggregation = "mean"
#
#   ## Instead of the top k largest metrics, return the bottom k lowest metrics
#   # bottomk = false
#
#   ## The plugin assigns each metric a GroupBy tag generated from its name and
#   ## tags. If this setting is different than "" the plugin will add a
#   ## tag (which name will be the value of this setting) to each metric with
#   ## the value of the calculated GroupBy tag. Useful for debugging
#   # add_groupby_tag = ""
#
#   ## These settings provide a way to know the position of each metric in
#   ## the top k. The 'add_rank_field' setting allows to specify for which
#   ## fields the position is required. If the list is non empty, then a field
#   ## will be added to each and every metric for each string present in this
#   ## setting. This field will contain the ranking of the group that
#   ## the metric belonged to when aggregated over that field.
#   ## The name of the field will be set to the name of the aggregation field,
#   ## suffixed with the string '_topk_rank'
#   # add_rank_fields = []
#
#   ## These settings provide a way to know what values the plugin is generating
#   ## when aggregating metrics. The 'add_agregate_field' setting allows to
#   ## specify for which fields the final aggregation value is required. If the
#   ## list is non empty, then a field will be added to each every metric for
#   ## each field present in this setting. This field will contain
#   ## the computed aggregation for the group that the metric belonged to when
#   ## aggregated over that field.
#   ## The name of the field will be set to the name of the aggregation field,
#   ## suffixed with the string '_topk_aggregate'
#   # add_aggregate_fields = []
###############################################################################
#                            AGGREGATOR PLUGINS                               #
###############################################################################
# # Keep the aggregate basicstats of each metric passing through.
# [[aggregators.basicstats]]
#   ## The period on which to flush & clear the aggregator.
#   period = "30s"
#   ## If true, the original metric will be dropped by the
#   ## aggregator and will not get sent to the output plugins.
#   drop_original = false
#
#   ## Configures which basic stats to push as fields
#   # stats = ["count", "min", "max", "mean", "stdev", "s2", "sum"]
# # Report the final metric of a series
# [[aggregators.final]]
#   ## The period on which to flush & clear the aggregator.
#   period = "30s"
#   ## If true, the original metric will be dropped by the
#   ## aggregator and will not get sent to the output plugins.
#   drop_original = false
#
#   ## The time that a series is not updated until considering it final.
#   series_timeout = "5m"
# # Create aggregate histograms.
# [[aggregators.histogram]]
#   ## The period in which to flush the aggregator.
#   period = "30s"
#
#   ## If true, the original metric will be dropped by the
#   ## aggregator and will not get sent to the output plugins.
#   drop_original = false
#
#   ## If true, the histogram will be reset on flush instead
#   ## of accumulating the results.
#   reset = false
#
#   ## Example config that aggregates all fields of the metric.
#   # [[aggregators.histogram.config]]
#   #   ## The set of buckets.
#   #   buckets = [0.0, 15.6, 34.5, 49.1, 71.5, 80.5, 94.5, 100.0]
#   #   ## The name of metric.
#   #   measurement_name = "cpu"
#
#   ## Example config that aggregates only specific fields of the metric.
#   # [[aggregators.histogram.config]]
#   #   ## The set of buckets.
#   #   buckets = [0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
#   #   ## The name of metric.
#   #   measurement_name = "diskio"
#   #   ## The concrete fields of metric
#   #   fields = ["io_time", "read_time", "write_time"]
# # Keep the aggregate min/max of each metric passing through.
# [[aggregators.minmax]]
#   ## General Aggregator Arguments:
#   ## The period on which to flush & clear the aggregator.
#   period = "30s"
#   ## If true, the original metric will be dropped by the
#   ## aggregator and will not get sent to the output plugins.
#   drop_original = false
# # Count the occurrence of values in fields.
# [[aggregators.valuecounter]]
#   ## General Aggregator Arguments:
#   ## The period on which to flush & clear the aggregator.
#   period = "30s"
#   ## If true, the original metric will be dropped by the
#   ## aggregator and will not get sent to the output plugins.
#   drop_original = false
#   ## The fields for which the values will be counted
#   fields = []
###############################################################################
#                            INPUT PLUGINS                                    #
###############################################################################
# Read metrics about cpu usage
[[inputs.cpu]]
  ## Whether to report per-cpu stats or not
  percpu = true
  ## Whether to report total system cpu stats or not
  totalcpu = true
  ## If true, collect raw CPU time metrics.
  collect_cpu_time = false
  ## If true, compute and report the sum of all non-idle CPU states.
  report_active = false
# Read metrics about memory usage
[[inputs.mem]]
  # no configuration
 
 
  • 测试模式运行

    可以方便进行调试输出

telegraf --config telegraf.conf --test
 

内容:

2019-07-27T15:36:34Z I! Starting Telegraf 1.11.3
> cpu,cpu=cpu0,host=dalongrong.local usage_guest=0,usage_guest_nice=0,usage_idle=38,usage_iowait=0,usage_irq=0,usage_nice=0,usage_softirq=0,usage_steal=0,usage_system=6,usage_user=56 1564241795000000000
> cpu,cpu=cpu1,host=dalongrong.local usage_guest=0,usage_guest_nice=0,usage_idle=96,usage_iowait=0,usage_irq=0,usage_nice=0,usage_softirq=0,usage_steal=0,usage_system=2,usage_user=2 1564241795000000000
> cpu,cpu=cpu2,host=dalongrong.local usage_guest=0,usage_guest_nice=0,usage_idle=44,usage_iowait=0,usage_irq=0,usage_nice=0,usage_softirq=0,usage_steal=0,usage_system=4,usage_user=52 1564241795000000000
> cpu,cpu=cpu3,host=dalongrong.local usage_guest=0,usage_guest_nice=0,usage_idle=100,usage_iowait=0,usage_irq=0,usage_nice=0,usage_softirq=0,usage_steal=0,usage_system=0,usage_user=0 1564241795000000000
> cpu,cpu=cpu4,host=dalongrong.local usage_guest=0,usage_guest_nice=0,usage_idle=54,usage_iowait=0,usage_irq=0,usage_nice=0,usage_softirq=0,usage_steal=0,usage_system=2,usage_user=44 1564241795000000000
 
  • 启动

    因为我没有安装influxdb,所以会有错误信息,安装方式可以使用容器

telegraf --config telegraf.conf

日志

2019-07-27T15:34:27Z I! Starting Telegraf 1.11.3
2019-07-27T15:34:27Z I! Loaded inputs: cpu mem
2019-07-27T15:34:27Z I! Loaded aggregators: 
2019-07-27T15:34:27Z I! Loaded processors: 
2019-07-27T15:34:27Z I! Loaded outputs: influxdb
2019-07-27T15:34:27Z I! Tags enabled: host=dalongrong.local
2019-07-27T15:34:27Z I! [agent] Config: Interval:10s, Quiet:false, Hostname:"dalongrong.local", Flush Interval:10s
2019-07-27T15:34:27Z W! [outputs.influxdb] when writing to [http://localhost:8086]: database "" creation failed: Post http://localhost:8086/query: dial tcp [::1]:8086: connect: connection refused
2019-07-27T15:34:40Z E! [outputs.influxdb] when writing to [http://localhost:8086]: Post http://localhost:8086/write?db=telegraf: dial tcp [::1]:8086: connect: connection refused
 
 

telegraf 包含的命令

  • help 命令
    学习包含的命令可以快速的了解工具的使用
 
Telegraf, The plugin-driven server agent for collecting and reporting metrics.
Usage:
  telegraf [commands|flags]
The commands & flags are:
  config print out full sample configuration to stdout
  version print the version to stdout
  --aggregator-filter <filter> filter the aggregators to enable, separator is :
  --config <file> configuration file to load
  --config-directory <directory> directory containing additional *.conf files
  --debug turn on debug logging
  --input-filter <filter> filter the inputs to enable, separator is :
  --input-list print available input plugins.
  --output-filter <filter> filter the outputs to enable, separator is :
  --output-list print available output plugins.
  --pidfile <file> file to write our pid to
  --pprof-addr <address> pprof address to listen on, don't activate pprof if empty
  --processor-filter <filter> filter the processors to enable, separator is :
  --quiet run in quiet mode
  --section-filter filter config sections to output, separator is :
                                 Valid values are 'agent', 'global_tags', 'outputs',
                                 'processors', 'aggregators' and 'inputs'
  --sample-config print out full sample configuration
  --test gather metrics, print them out, and exit;
                                 processors, aggregators, and outputs are not run
  --usage <plugin> print usage for a plugin, ie, 'telegraf --usage mysql'
  --version display the version and exit
Examples:
  # generate a telegraf config file:
  telegraf config > telegraf.conf
  # generate config with only cpu input & influxdb output plugins defined
  telegraf --input-filter cpu --output-filter influxdb config
  # run a single telegraf collection, outputing metrics to stdout
  telegraf --config telegraf.conf --test
  # run telegraf with all plugins defined in config file
  telegraf --config telegraf.conf
  # run telegraf, enabling the cpu & memory input, and influxdb output plugins
  telegraf --config telegraf.conf --input-filter cpu:mem --output-filter influxdb
  # run telegraf with pprof
  telegraf --config telegraf.conf --pprof-addr localhost:6060

说明

以上就是一个简单的安装,以及基本使用,后边会关注下input,output ,aggregator, processor的使用

参考资料

https://github.com/influxdata/telegraf
https://docs.influxdata.com/telegraf/v1.11/

telegraf 学习一 基本安装的更多相关文章

  1. GitHub学习心得之 安装配置与多帐号管理

    作者:枫雪庭 出处:http://www.cnblogs.com/FengXueTing-px/ 欢迎转载 GitHub学习心得之 安装配置与多帐号管理 1.前言2.GitHub Linux安装(ub ...

  2. 学习Linux系列--安装Ubuntu

    最近学习Linux,使用虚拟机太不方便,于是购买了阿里云最便宜的云主机作为学习设备. 本系列文章记录了个人学习过程的点点滴滴. 学习Linux系列--安装Ubuntu 学习Linux系列--安装软件环 ...

  3. 学习Sass之安装Sass(一)

    为什么使用Sass 作为前端(html.javascript.css)的三大马车之一的css,一直以静态语言存在,HTML5火遍大江南北了.javascript由于NODE.JS而成为目前前后端统一开 ...

  4. CentOS学习笔记--Tomcat安装

    Tomcat安装 通常情况下我们要配置Tomcat是很容易的一件事情,但是如果您要架设多用户多服务的Java虚拟主机就不那么容易了.其中最大的一个问题就是Tomcat执行权限.普通方式配置的Tomca ...

  5. 学习Sass之安装Sass

    学习Sass之安装Sass 为什么使用Sass 作为前端(html.javascript.css)的三大马车之一的css,一直以静态语言存在,HTML5火遍大江南北了.javascript由于NODE ...

  6. 深度学习框架-caffe安装-环境[Mac OSX 10.12]

    深度学习框架-caffe安装 [Mac OSX 10.12] [参考资源] 1.英文原文:(使用GPU) [http://hoondy.com/2015/04/03/how-to-install-ca ...

  7. 深度学习框架-caffe安装-Mac OSX 10.12

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 ...

  8. 【分布式】ZooKeeper学习之一:安装及命令行使用

    ZooKeeper学习之一:安装及命令行使用 一直都想着好好学一学分布式系统,但是这拖延症晚期也是没得治了,所以干脆强迫自己来写一个系列博客,从zk的安装使用.客户端调用.涉及到的分布式原理.选举过程 ...

  9. libevent的入门学习-库的安装【转】

    转自:https://blog.csdn.net/lookintosky/article/details/61658067 libevent的入门学习-库的安装最近开始接触Linux应用层的东西,发现 ...

随机推荐

  1. 最新版Prometheus+Grafana+node-exporter炫酷界面

    一.概述 理论知识就不多介绍了,参考链接: https://www.cnblogs.com/xiao987334176/p/9930517.html 本文使用2台服务器,来搭建. 环境 操作系统 do ...

  2. 解决C#调用COM组件异常来自 HRESULT:0x80010105 (RPC_E_SERVERFAULT)的错误

    最近C#调用COM时,遇到了异常来自 HRESULT:0x80010105 (RPC_E_SERVERFAULT)的错误 后面找了一下,发现是在线程里调用COM组件引起的. C++调用COM时,会调用 ...

  3. .net Dapper 实践系列(2) ---事务添加(Layui+Ajax+Dapper+MySQL)

    目录 写在前面 问题描述 解决方法 具体实现 写在前面 前面我们已经搭建好了项目,这一小节我们使用Dapper 中的事务实现一对多的添加操作. 问题描述 在做添加的时候很头疼需要从页面传递一组数据到后 ...

  4. Linux生产环境上,最常用的一套“AWK“技巧【转】

    最有用系列: <Linux生产环境上,最常用的一套“vim“技巧> <Linux生产环境上,最常用的一套“Sed“技巧> <Linux生产环境上,最常用的一套“AWK“技 ...

  5. 2019 小米java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.小米等公司offer,岗位是Java后端开发,因为发展原因最终选择去了小米,入职一年时间了,也成为了面试官,之 ...

  6. JAVA基础之会话技术-Cookie及Session

    至此,学习Servlet三个域对象:ServletContext(web项目).request(一次请求).Session(一个客户端)!均有相同的方法! 从用户开始打开浏览器进行操作,便开始了一次会 ...

  7. Linux中打开文件显示行号相关命令

    一.显示行号 :set number 或 :set nu 二.取消显示行号 :set nu! 三.每次打开显示行号 修改vi ~/.vimrc 文件,添加:set number

  8. Telnet入侵Windows2000

    开启Telnet 打开控制面板,管理工具 计算机管理 连接刚刚探测到的主机 输入探测到的主机IP 如下图所示,连接成功 找到Telnet服务 启动Telnet服务 远程登录 注意 Telnet登录需要 ...

  9. Mysql 单表查询where初识

    Mysql 单表查询where初识 准备数据 -- 创建测试库 -- drop database if exists student_db; create database student_db ch ...

  10. 复盘一篇讲sklearn库学习文章(上)

    认识 sklearn 官网地址: https://scikit-learn.gor/stable/ 从2007年发布以来, scikit-learn已成为重要的Python机器学习库, 简称sklea ...