题目链接

欧拉定理:

当\(a\),\(m\)互质时,\(a^{\phi(m)}\equiv 1 (mod ~ m)\)

扩展欧拉定理:

当\(B>\phi(m)\)时,\(a^B\equiv a^{B~mod~\phi(m)+\phi(m)}\)

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define int long long
using namespace std; int a,m,b;
bool flag; inline int read(int MOD){
int x=0; char c=getchar();
while(c<'0') c=getchar();
while(c>='0'){
x=x*10+c-'0';
if(x>MOD) flag=1,x%=MOD;
c=getchar();
}
return x;
} inline int mul(int x,int y,int MOD){
int s=0;
while(y){
if(y&1) s=(s+x)%MOD;
y>>=1;
x=(x+x)%MOD;
}
return s;
} inline int qpow(int x,int k,int MOD){
int s=1ll%MOD;
while(k){
if(k&1) s=mul(s,x,MOD);
k>>=1;
x=mul(x,x,MOD);
}
return s;
} signed main()
{
scanf("%lld%lld",&a,&m);
int phi=m;
int k=sqrt(m),x=m;
for(int i=2;i<=k;++i)
if(x%i==0){
while(x%i==0) x/=i;
phi=phi/i*(i-1);
}
if(x!=1) phi=phi/x*(x-1);
b=read(phi);
if(flag)
printf("%lld\n",qpow(a,b+phi,m));
else printf("%lld\n",qpow(a,b,m));
return 0;
}

【luoguP5091】【模板】欧拉定理的更多相关文章

  1. P5091 【模板】欧拉定理(欧拉降幂)

    P5091 [模板]欧拉定理 以上3张图是从这篇 博客 里盗的,讲的比较清楚. #include<bits/stdc++.h> using namespace std; typedef l ...

  2. P5091 【模板】欧拉定理

    思路 欧拉定理 当a与m互质时 \[ a^ {\phi (m)} \equiv 1 \ \ (mod\ m) \] 扩展欧拉定理 当a与m不互质且\(b\ge \phi(m)\)时, \[ a^b \ ...

  3. LG5901 【模板】欧拉定理

    题意 题目描述 给你三个正整数,$a,m,b$,你需要求: $a^b \mod m$ 输入输出格式 输入格式: 一行三个整数,$a,m,b$ 输出格式: 一个整数表示答案 输入输出样例 输入样例#1: ...

  4. 题解 P5091 【【模板】欧拉定理】

    欧拉定理:若 \(gcd(a,n)=1\),\(a^{\varphi(n)}\equiv 1(mod\ n)\) 设 \(1\sim n-1\) 中与 \(n\) 互素的 \(\varphi(n)\) ...

  5. [洛谷P5091]【模板】欧拉定理

    题目大意:求$a^b\bmod m(a\leqslant10^9,m\leqslant10^6,b\leqslant10^{2\times10^7})$ 题解:扩展欧拉定理:$$a^b\equiv\b ...

  6. 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)

    题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...

  7. P5091 【模板】扩展欧拉定理

    题目链接 昨天考试考到了欧拉公式,结果发现自己不会,就来恶补一下. 欧拉公式 \(a^b \bmod p = a^{b}\) \(b < \varphi(p)\) \(a^b \bmod p = ...

  8. uestc_retarded 模板

    虽然这个队,以后再也没有了,但是他的模板,是永垂不朽的![误 #include <ext/pb_ds/priority_queue.hpp> __gnu_pbds::priority_qu ...

  9. Description has only two Sentences(欧拉定理 +快速幂+分解质因数)

    Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...

随机推荐

  1. Hive学习笔记(三)—— 数据类型

    Hive的基本使用(一)--数据类型 1. Hive的基本数据类型 Hive数据类型 Java数据类型 长度 例子 TINYINT byte 1byte有符号整数 20 SMALINT short 2 ...

  2. selenium中的元素操作之三大切换(二)

    一.窗口切换 使用方法: 1.获取到打开的所有的窗口,句柄handles all_handles = driver.window_handles print(all_handles) 2.获取当前的窗 ...

  3. python-tyoira基本

    目录 .Typora安装 我们在之前的时候记录笔记就是使用word和记事本,但是从今天开始我们要更换软件,记录笔记使用Typora软件,为什么要使用Typora的软件呢,是因为我们程序员不只是写代码这 ...

  4. react新旧生命周期

    React16.3.0之前生命周期 16.3开始建议使用新的生命周期

  5. hbuilder 热更新

    记录下Hbuilder做热更新的功能. 首先是获取本地的版本与服务器的版本对比.服务器的版本大于本地的版本才进行更新.获取本地版本的方法 plus.runtime.getProperty(plus.r ...

  6. TortoiseSVN安装和使用

    安装说明 使用说明 检出项目 导入项目 提交 更新 查看日志 版本回滚 版本控制 总结 安装说明 开发人员强烈建议使用IDE中的SVN插件更加智能与人性化. 首先安装SVN客户端,windows一般选 ...

  7. Java 格式化日期、时间

    有三种方法可以格式化日期.时间. 1.使用DateFormat类 获取DateFormat实例: DateFormat.getDateInstance()    只能格式化日期      2019年5 ...

  8. ABAP和Java里的单例模式攻击

    面向对象编程世界里的单例模式(Singleton)可能是设计模式里最简单的一种,大多数开发人员都觉得可以很容易掌握它的用法.单例模式保证一个类仅有一个实例,并提供一个访问它的全局访问点. 然而在某些场 ...

  9. scrapy随机切换user-agent

    使用github的 scrapy-fake-useragent 不用自己改源码继承自带的userAgent中间件  只需要安装后增加配置即可 https://github.com/alecxe/scr ...

  10. oracle中的存储过程(实例一)

    引子 这是测试环境存在了很久的问题.由于基础配置信息(如:代理人信息)不像生产环境有专人维护,常常会有数据过期,导致无法使用的情况. 而很多配置数据是在外围系统维护(如代理人信息,在销管系统)以往的解 ...