System: Centos7.4

I:OpenVINO 的安装

refer:https://docs.openvinotoolkit.org/latest/_docs_install_guides_installing_openvino_linux.html

II: 基于OpenVINO tensorflow 的model optimizer 参考(SSD部分)

https://www.cnblogs.com/fourmi/p/10888513.html

执行路径:/opt/intel/openvino/deployment_tools/model_optimizer

执行指令:

python3.6 mo_tf.py  --input_model=/home/gsj/object-detection/test_models/ssd_inception_v2_coco_2018_01_28/frozen_inference_graph.pb --tensorflow_use_custom_operations_config /opt/intel/openvino_2019.2.201/deployment_tools/model_optimizer/extensions/front/tf/ssd_v2_support.json --tensorflow_object_detection_api_pipeline_config /home/gsj/object-detection/test_models/ssd_inception_v2_coco_2018_01_28/pipeline.config --reverse_input_channels --batch 32

II:改写文件路径:

/opt/intel/openvino/inference_engine/samples/self_object_detection

包含文件

main.cpp   self_object_detection_engine_head.h
CMakeLists.txt README.md self_object_detection.h

1. main.cpp

 // Copyright (C) 2018-2019 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
/*******************************************************************
* Copyright:2019-2030, CC
* File Name: Main.cpp
* Description: main function includes ObjectDetection,
* Initialize_Check, readInputimagesNames,
* load_inference_engine, readIRfiles,
* prepare_input_blobs, load_and_create_request,*
* prepare_input , process
*Author: Gao Shengjun
*Date: 2019-07-19
*******************************************************************/
#include <gflags/gflags.h>
#include <iostream>
#include <string>
#include <memory>
#include <vector>
#include <algorithm>
#include <map> #include <format_reader_ptr.h>
#include <inference_engine.hpp>
#include <ext_list.hpp> #include <samples/common.hpp>
#include <samples/slog.hpp>
#include <samples/args_helper.hpp> #include <vpu/vpu_tools_common.hpp>
#include <vpu/vpu_plugin_config.hpp> #include "self_object_detection_engine_head.h" bool ParseAndCheckCommandLine(int argc, char *argv[]) {
gflags::ParseCommandLineNonHelpFlags(&argc, &argv, true);
if (FLAGS_h) {
showUsage();
showAvailableDevices();
return false;
} slog::info << "Parsing input parameters" << slog::endl; if (FLAGS_i.empty()) {
throw std::logic_error("Parameter -i is not set");
} if (FLAGS_m.empty()) {
throw std::logic_error("Parameter -m is not set");
} return true;
} static std::map<std::string, std::string> configure(const std::string& confFileName) {
auto config = parseConfig(confFileName); return config;
} void Initialize_Check_params(int argc,char* argv[]){
slog::info << "InferenceEngine: " << GetInferenceEngineVersion()<<"\n";
if(!ParseAndCheckCommandLine(argc,argv)){
slog::info<<"Check successfully"<<"\n";
return ;
}
return;
} std::vector<std::string> readInputimagesNames(){
std::vector<std::string>images;
parseInputFilesArguments(images);
if(images.empty()) throw std::logic_error("No suitable images were found");
return images;
} void load_inference_engine(Core &ie){
slog::info <<"Loading Inference Engine"<<slog::endl;
slog::info <<"Device info:" <<slog::endl;
std::cout<<ie.GetVersions(FLAGS_d);
if(FLAGS_p_msg){
ie.SetLogCallback(error_listener);
}
if (FLAGS_d.find("CPU")!=std::string::npos){
ie.AddExtension(std::make_shared<Extensions::Cpu::CpuExtensions>(),"CPU");
}
if(!FLAGS_l.empty()){
IExtensionPtr extension_ptr = make_so_pointer<IExtension>(FLAGS_l);
ie.AddExtension(extension_ptr,"CPU");
slog::info <<"CPU Extension loaded: "<<FLAGS_l<<slog::endl;
}
if(!FLAGS_c.empty()){
ie.SetConfig({{PluginConfigParams::KEY_CONFIG_FILE,FLAGS_c}},"GPU");
slog::info<<"GPU Extension loaded: "<<FLAGS_c<<slog::endl;
} } struct NetworkReader_networkinfo readIRfiles(){
struct NetworkReader_networkinfo nettools;
std::string binFileName = fileNameNoExt(FLAGS_m) +".bin";
slog::info << "Loading network files:"
"\n\t" << FLAGS_m <<
"\n\t" << binFileName <<
slog::endl;
CNNNetReader networkReader;
networkReader.ReadNetwork(FLAGS_m);
networkReader.ReadWeights(binFileName);
CNNNetwork network = networkReader.getNetwork();
nettools.networkReader = networkReader;
nettools.network = network;
return nettools;
} struct inputInfo_imageName prepare_input_blobs( CNNNetwork &network,CNNNetReader &networkReader, InputsDataMap &inputsInfo){
slog::info << "Preparing input blobs" << slog::endl;
struct inputInfo_imageName res;
if (inputsInfo.size() != && inputsInfo.size() != ) throw std::logic_error("Sample supports topologies only with 1 or 2 inputs");
std::string imageInputName,imInfoInputName;
InputInfo::Ptr inputInfo = nullptr;
SizeVector inputImageDims;
for(auto &item:inputsInfo){
if(item.second->getInputData()->getTensorDesc().getDims().size()==){
imageInputName = item.first;
inputInfo = item.second;
slog::info<<"Batch size is "<<std::to_string(networkReader.getNetwork().getBatchSize())<<slog::endl;
Precision inputPrecision =Precision::U8;
item.second->setPrecision(inputPrecision);
}else if(item.second->getInputData()->getTensorDesc().getDims().size()==){
imInfoInputName = item.first;
Precision inputPrecision = Precision::FP32;
item.second->setPrecision(inputPrecision);
if((item.second->getTensorDesc().getDims()[]!= && item.second->getTensorDesc().getDims()[]!=)){
throw std::logic_error("Invalid input info. Should be 3 or 6 values length");
}
}
}
if(inputInfo == nullptr){
inputInfo = inputsInfo.begin()->second;
}
res.inputInfo = inputInfo;
res.InputName = imageInputName;
res.imInfoInputName=imInfoInputName;
return res;
} struct outputInfoStruct prepare_output_blobs(CNNNetwork &network){
struct outputInfoStruct res_output;
slog::info << "Preparing output blobs" << slog::endl;
OutputsDataMap outputsInfo(network.getOutputsInfo());
std::string outputName;
DataPtr outputInfo;
for(const auto& out : outputsInfo){
if(out.second->getCreatorLayer().lock()->type=="DetectionOutput"){
outputName = out.first;
outputInfo = out.second;
}
}
if(outputInfo == nullptr){
throw std::logic_error("Can't find a DetectionOutput layers in the topology");
}
const SizeVector outputDims = outputInfo->getTensorDesc().getDims();
res_output.maxProposalCount=outputDims[];
res_output.objectSize=outputDims[];
res_output.outputName=outputName;
if (res_output.objectSize != ) {
throw std::logic_error("Output item should have 7 as a last dimension");
} if (outputDims.size() != ) {
throw std::logic_error("Incorrect output dimensions for SSD model");
} outputInfo->setPrecision(Precision::FP32);
return res_output;
} struct exenet_requests load_and_create_request(CNNNetwork& network,Core &ie){
struct exenet_requests res;
slog::info << "Loading model to the device" << slog::endl;
res.executable_network = ie.LoadNetwork(network, FLAGS_d, configure(FLAGS_config));
slog::info << "Create infer request" << slog::endl;
res.infer_request = res.executable_network.CreateInferRequest();
return res;
} struct res_outputStruct prepare_input(std::vector<std::string>& images,CNNNetwork& network, struct inputInfo_imageName& res,InferRequest& infer_request,InputsDataMap& inputsInfo){
struct res_outputStruct output_res2;
std::vector<std::shared_ptr<unsigned char>> imageData,originalImagesData;
std::vector<size_t>imageWidths,imageHeights;
for(auto &i : images){
FormatReader::ReaderPtr reader(i.c_str());
if(reader.get()==nullptr){
slog::warn << "Image" + i + "cannot be read!" <<slog::endl;
continue;
}
std::shared_ptr<unsigned char>originalData(reader->getData());
std::shared_ptr<unsigned char>data(reader->getData(res.inputInfo->getTensorDesc().getDims()[],res.inputInfo->getTensorDesc().getDims()[]));
if(data.get()!=nullptr){
originalImagesData.push_back(originalData);
imageData.push_back(data);
imageWidths.push_back(reader->width());
imageHeights.push_back(reader->height()); } }
if(imageData.empty())throw std::logic_error("Valid input images were not found!");
size_t batchSize = network.getBatchSize();
slog::info << "Batch Size is "<<std::to_string(batchSize)<<slog::endl;
if(batchSize!=imageData.size()){
slog::warn << "Number of images " + std::to_string(imageData.size()) + \
"dosen't match batch size "+std::to_string(batchSize)<<slog::endl;
batchSize = std::min(batchSize,imageData.size());
slog::warn <<"Number of images to be processed is "<<std::to_string(batchSize)<<slog::endl;
}
Blob::Ptr imageInput = infer_request.GetBlob(res.InputName);
size_t num_channels = imageInput->getTensorDesc().getDims()[];
size_t image_size=imageInput->getTensorDesc().getDims()[]*imageInput->getTensorDesc().getDims()[];
unsigned char* data = static_cast<unsigned char*>(imageInput->buffer());
for(size_t image_id = ; image_id < std::min(imageData.size(),batchSize);++image_id){
for(size_t pid = ; pid < image_size; pid++){
for(size_t ch = ; ch < num_channels;++ch){
data[image_id*image_size*num_channels + ch*image_size+pid] = imageData.at(image_id).get()[pid*num_channels + ch];
}
}
}
if(res.imInfoInputName!=""){
Blob::Ptr input2 = infer_request.GetBlob(res.imInfoInputName);
auto imInfoDim = inputsInfo.find(res.imInfoInputName)->second->getTensorDesc().getDims()[];
float *p = input2->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>();
for(size_t image_id=;image_id<std::min(imageData.size(),batchSize);++image_id){
p[image_id*imInfoDim+] = static_cast<float>(inputsInfo[res.InputName]->getTensorDesc().getDims()[]);
p[image_id*imInfoDim+] = static_cast<float>(inputsInfo[res.InputName]->getTensorDesc().getDims()[]);
for(size_t k = ; k < imInfoDim; ++k){
p[image_id*imInfoDim+k]=1.0f;
}
}
}
output_res2.originalImagesData=originalImagesData;
output_res2.imageWidths=imageWidths;
output_res2.imageHeights=imageHeights;
output_res2.batchSize=batchSize;
slog::info<<"Start inference"<<slog::endl;
infer_request.Infer();
return output_res2;
} void process(InferRequest& infer_request,std::string& outputName,size_t& batchSize,const int& maxProposalCount,const int& objectSize,std::vector<size_t>& imageWidths,std::vector<size_t>& imageHeights,std::vector<std::shared_ptr<unsigned char>>& originalImagesData){
slog::info << "Processing output blobs" <<slog::endl;
const Blob::Ptr output_blob = infer_request.GetBlob(outputName);
const float* detection = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(output_blob->buffer());
std::vector<std::vector<int>>boxes(batchSize);
std::vector<std::vector<int>>classes(batchSize);
std::cout<<imageWidths[]<<"--"<<imageHeights[]<<" "<<detection[]<<std::endl; for(int curProposal = ; curProposal < maxProposalCount;curProposal++){
auto image_id = static_cast<int>(detection[curProposal * objectSize +]);
if(image_id < ){break;}
float confidence =detection[curProposal * objectSize + ];
auto label = static_cast<int>(detection[curProposal * objectSize + ]);
auto xmin = static_cast<int>(detection[curProposal * objectSize + ] * imageWidths[image_id]);
auto ymin = static_cast<int>(detection[curProposal * objectSize + ] * imageHeights[image_id]);
auto xmax = static_cast<int>(detection[curProposal * objectSize + ] * imageWidths[image_id]);
auto ymax = static_cast<int>(detection[curProposal * objectSize + ] * imageHeights[image_id]);
std::cout << "[" << curProposal << "," << label << "] element, prob = " << confidence <<
" (" << xmin << "," << ymin << ")-(" << xmax << "," << ymax << ")" << " batch id : " << image_id;
if(confidence > 0.3){
classes[image_id].push_back(label);
boxes[image_id].push_back(xmin);
boxes[image_id].push_back(ymin);
boxes[image_id].push_back(xmax - xmin);
boxes[image_id].push_back(ymax - ymin);
std::cout << " WILL BE PRINTED!";
}
std::cout<<std::endl;
}
for(size_t batch_id = ; batch_id < batchSize; ++batch_id){
addRectangles(originalImagesData[batch_id].get(),imageHeights[batch_id],imageWidths[batch_id],boxes[batch_id],classes[batch_id],BBOX_THICKNESS);
const std::string image_path = "out_" + std::to_string(batch_id) + ".bmp";
if (writeOutputBmp(image_path, originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id])) {
slog::info << "Image " + image_path + " created!" << slog::endl;
} else {
throw std::logic_error(std::string("Can't create a file: ") + image_path);
} } } /****************************************MAIN***************************************************/ int main(int argc, char *argv[]) {
try {
/** This sample covers certain topology and cannot be generalized for any object detection one **/
// --------------------------- 1. Parsing and validation of input args ---------------------------------
Initialize_Check_params(argc,argv);
// --------------------------- 2. Read input -----------------------------------------------------------
/** This vector stores paths to the processed images **/
std::vector<std::string> images = readInputimagesNames();
// ----------------------------------------------------------------------------------------------------- // --------------------------- 3. Load inference engine -------------------------------------
Core ie;
load_inference_engine(ie); // --------------------------- 4. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------
CNNNetwork network = readIRfiles().network;
CNNNetReader networkReader = readIRfiles().networkReader;
// ----------------------------------------------------------------------------------------------------- // --------------------------- 5. Prepare input blobs --------------------------------------------------
/** Taking information about all topology inputs **/
InputsDataMap inputsInfo(network.getInputsInfo()); struct inputInfo_imageName res = prepare_input_blobs(network,networkReader, inputsInfo);
InputInfo::Ptr inputInfo = res.inputInfo;
std::string imageInputName = res.InputName;
std::string imInfoInputName = res.imInfoInputName; // ----------------------------------------------------------------------------------------------------- // --------------------------- 6. Prepare output blobs -------------------------------------------------
struct outputInfoStruct res_output = prepare_output_blobs(network);
const int maxProposalCount = res_output.maxProposalCount;
const int objectSize =res_output.objectSize;
std::string outputName = res_output.outputName; // ----------------------------------------------------------------------------------------------------- // --------------------------- 7. Loading model to the device ------------------------------------------
struct exenet_requests exe_req = load_and_create_request(network,ie);
ExecutableNetwork executable_network = exe_req.executable_network;
InferRequest infer_request = exe_req.infer_request;
// -----------------------------------------------------------------------------------------------------
// --------------------------- 8. Prepare input --------------------------------------------------------
struct res_outputStruct out_struct =prepare_input(images,network,res,infer_request,inputsInfo);
std::vector<std::shared_ptr<unsigned char>>originalImagesData=out_struct.originalImagesData;
std::vector<size_t>imageWidths=out_struct.imageWidths;
std::vector<size_t>imageHeights=out_struct.imageHeights;
size_t batchSize = out_struct.batchSize;
// -----------------------------------------------------------------------------------------------------
// --------------------------- 9. Process output -------------------------------------------------------
process(infer_request, outputName, batchSize, maxProposalCount, objectSize, imageWidths,imageHeights,originalImagesData);
// -----------------------------------------------------------------------------------------------------
}
catch (const std::exception& error) {
slog::err << error.what() << slog::endl;
return ;
}
catch (...) {
slog::err << "Unknown/internal exception happened." << slog::endl;
return ;
} slog::info << "Execution successful" << slog::endl;
slog::info << slog::endl << "This sample is an API example, for any performance measurements "
"please use the dedicated benchmark_app tool" << slog::endl;
return ;
}

2. self_object_detection_engine_head.h

 /*******************************************************************
* Copyright:2019-2030, CC
* File Name: self_object_detection_engine_head.h
* Description: main function includes ObjectDetection,
* Initialize_Check, readInputimagesNames,
* load_inference_engine, readIRfiles,
* prepare_input_blobs, load_and_create_request,*
* prepare_input , process
*Author: Gao Shengjun
*Date: 2019-07-19
*******************************************************************/
#ifndef SELF_OBJECT_DETECTION_ENGINE_HEAD_H
#define SELF_OBJECT_DETECTION_ENGINE_HEAD_H #include "self_object_detection.h"
#include <gflags/gflags.h>
#include <iostream>
#include <string>
#include <memory>
#include <vector>
#include <algorithm>
#include <map> #include <format_reader_ptr.h>
#include <inference_engine.hpp>
#include <ext_list.hpp> #include <samples/common.hpp>
#include <samples/slog.hpp>
#include <samples/args_helper.hpp> #include <vpu/vpu_tools_common.hpp>
#include <vpu/vpu_plugin_config.hpp>
using namespace InferenceEngine;
ConsoleErrorListener error_listener; typedef struct NetworkReader_networkinfo{
CNNNetReader networkReader;
CNNNetwork network;
}NetworkReader_networkinfo; typedef struct inputInfo_imageName{
InputInfo::Ptr inputInfo;
std::string InputName;
std::string imInfoInputName; }inputInfo_imageName; typedef struct outputInfoStruct{
int maxProposalCount ;
int objectSize;
std::string outputName;
}outputInfoStruct; typedef struct exenet_requests{
ExecutableNetwork executable_network;
InferRequest infer_request; }exenet_requests; typedef struct res_outputStruct {
std::vector<std::shared_ptr<unsigned char>>originalImagesData;
std::vector<size_t>imageWidths;
std::vector<size_t>imageHeights;
size_t batchSize; }res_outputStruct; #ifdef __cplusplus
extern "C"
{
#endif /**
* @brief get the version of the InferenceEngine and parse the input params, print the help information about the instruct if needed, check the required input params eg. the file of model and the input images both are required. * @ param[in] argc: the number of the input params,
* argv: the vector to store the input params
* @ param[out] None
*/
void Initialize_Check_params(int argc,char* argv[]); /**
*@brief get the input images filenames and store the in a vector *@ param[in] None
*@ param[out] return the filenames of the images
*@ Parse the info of the inputimages by call " parseInputFilesArguments " build in OpenVINO
*/
std::vector<std::string> readInputimagesNames(); /**
* @brief load the extension_plugin according the specific devices,eg CPU,GPU
* @ param[in] Core &ie
* @ param[out] None
*/
void load_inference_engine(Core& ie); /**
* @brief read the proto and weights files which produced by openvino model optimizer tools of the network.
* @ param[in] flags_m: the model files *.bin,*.xml
* @ param[out] Struct contains NetworkReader and the structure info of the model
*/
struct NetworkReader_networkinfo readIRfiles(); /*
* @brief get the detail InputsInfo for the blob format according the InputsInfo, and set the precision of the inputs according to the input format ,eg,[NCHW]:U8 [HW]:FP32
* @ param[in] network,CNNNetReader,inputsInfo
* @ param[out] strcut contains the inputInfo,ImageInputName,the info name of the input Image
*/
struct inputInfo_imageName prepare_input_blobs( CNNNetwork &network,CNNNetReader &networkReader, InputsDataMap &inputsInfo); /*
* @brief get the info of the ouputs from the network by calling the OPENVINO's "getOutputsInof()"
* @ param[in] network
* @ param[out] strcut contains the model's maxProposals,objectSize,outputName
*/
struct outputInfoStruct prepare_output_blobs(CNNNetwork &network); /*
* @brief Load the network to the device and create the infer request
* @ param[in] network, Core
* @ param[out] struct contains the excuteable network and the inferRequest
*/
struct exenet_requests load_and_create_request(CNNNetwork& network,Core &ie); /*
* @brief read the input images and create the input blob and start the infer request
* @ param[in] images:the path of the images , network: the info of the model, inputInfo_imageName,inputInfo_imageName, infer_request, inputsInfo
* @ param[out] return the data of the input images and its height ,width,batchSize.
*/
struct res_outputStruct prepare_input(std::vector<std::string>& images,CNNNetwork& network, struct inputInfo_imageName& res,InferRequest& infer_request,InputsDataMap& inputsInfo); /*
* @brief get the output according the output_blob,and get the (label,xmin,ymin,xmax,ymax) about the detection boxes , I set the thread value :0.3 it gets the better result.
* @param [in] infer_request, outputName,batchSize,maxProposalCount,objectSize,imageWidths,imageHeights,originalImagesData
* @param [out] None
*/
void process(InferRequest& infer_request,std::string& outputName,size_t& batchSize,const int& maxProposalCount,const int& objectSize,std::vector<size_t>& imageWidths,std::vector<size_t>& imageHeights,std::vector<std::shared_ptr<unsigned char>>& originalImagesData);
#ifdef __cplusplus
}
#endif
#endif

3.self_object_detection.h

 // Copyright (C) 2018-2019 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
// #pragma once #include <string>
#include <vector>
#include <gflags/gflags.h>
#include <iostream> /* thickness of a line (in pixels) to be used for bounding boxes */
#define BBOX_THICKNESS 2 /// @brief message for help argument
static const char help_message[] = "Print a usage message."; /// @brief message for images argument
static const char image_message[] = "Required. Path to an .bmp image."; /// @brief message for model argument
static const char model_message[] = "Required. Path to an .xml file with a trained model."; /// @brief message for plugin argument
static const char plugin_message[] = "Plugin name. For example MKLDNNPlugin. If this parameter is pointed, " \
"the sample will look for this plugin only"; /// @brief message for assigning cnn calculation to device
static const char target_device_message[] = "Optional. Specify the target device to infer on (the list of available devices is shown below). " \
"Default value is CPU. Use \"-d HETERO:<comma-separated_devices_list>\" format to specify HETERO plugin. " \
"Sample will look for a suitable plugin for device specified"; /// @brief message for clDNN custom kernels desc
static const char custom_cldnn_message[] = "Required for GPU custom kernels. "\
"Absolute path to the .xml file with the kernels descriptions."; /// @brief message for user library argument
static const char custom_cpu_library_message[] = "Required for CPU custom layers. " \
"Absolute path to a shared library with the kernels implementations."; /// @brief message for plugin messages
static const char plugin_err_message[] = "Optional. Enables messages from a plugin"; /// @brief message for config argument
static constexpr char config_message[] = "Path to the configuration file. Default value: \"config\"."; /// \brief Define flag for showing help message <br>
DEFINE_bool(h, false, help_message); /// \brief Define parameter for set image file <br>
/// It is a required parameter
DEFINE_string(i, "", image_message); /// \brief Define parameter for set model file <br>
/// It is a required parameter
DEFINE_string(m, "", model_message); /// \brief device the target device to infer on <br>
DEFINE_string(d, "CPU", target_device_message); /// @brief Define parameter for clDNN custom kernels path <br>
/// Default is ./lib
DEFINE_string(c, "", custom_cldnn_message); /// @brief Absolute path to CPU library with user layers <br>
/// It is a optional parameter
DEFINE_string(l, "", custom_cpu_library_message); /// @brief Enable plugin messages
DEFINE_bool(p_msg, false, plugin_err_message); /// @brief Define path to plugin config
DEFINE_string(config, "", config_message); /**
* \brief This function show a help message
*/
static void showUsage() {
std::cout << std::endl;
std::cout << "object_detection_sample_ssd [OPTION]" << std::endl;
std::cout << "Options:" << std::endl;
std::cout << std::endl;
std::cout << " -h " << help_message << std::endl;
std::cout << " -i \"<path>\" " << image_message << std::endl;
std::cout << " -m \"<path>\" " << model_message << std::endl;
std::cout << " -l \"<absolute_path>\" " << custom_cpu_library_message << std::endl;
std::cout << " Or" << std::endl;
std::cout << " -c \"<absolute_path>\" " << custom_cldnn_message << std::endl;
std::cout << " -d \"<device>\" " << target_device_message << std::endl;
std::cout << " -p_msg " << plugin_err_message << std::endl;
}

IV: 编译

执行路径:

/opt/intel/openvino/inference_engine/samples

sh ./build_samples.sh

V: Test

执行路径:

/root/inference_engine_samples_build/intel64/Release

执行命令:

./self_object_detection -m /opt/intel/openvino_2019.2.201/deployment_tools/model_optimizer/./frozen_inference_graph.xml -d CPU -i /home/gsj/dataset/coco_val/val8

VI: result

[ INFO ] InferenceEngine:
API version ............ 2.0
Build .................. custom_releases//R2_3044732e25bc7dfbd11a54be72e34d512862b2b3
Description ....... API
Parsing input parameters
[ INFO ] Files were added:
[ INFO ] /home/gsj/dataset/coco_val/val8/.jpg
[ INFO ] /home/gsj/dataset/coco_val/val8/.jpg
[ INFO ] /home/gsj/dataset/coco_val/val8/.jpg
[ INFO ] /home/gsj/dataset/coco_val/val8/.jpg
[ INFO ] /home/gsj/dataset/coco_val/val8/.jpg
[ INFO ] /home/gsj/dataset/coco_val/val8/.jpg
[ INFO ] /home/gsj/dataset/coco_val/val8/.jpg
[ INFO ] /home/gsj/dataset/coco_val/val8/.jpg
[ INFO ] Loading Inference Engine
[ INFO ] Device info:
CPU
MKLDNNPlugin version ......... 2.0
Build ...........
[ INFO ] Loading network files:
/opt/intel/openvino_2019.2.201/deployment_tools/model_optimizer/./frozen_inference_graph.xml
/opt/intel/openvino_2019.2.201/deployment_tools/model_optimizer/./frozen_inference_graph.bin
[ INFO ] Loading network files:
/opt/intel/openvino_2019.2.201/deployment_tools/model_optimizer/./frozen_inference_graph.xml
/opt/intel/openvino_2019.2.201/deployment_tools/model_optimizer/./frozen_inference_graph.bin
[ INFO ] Preparing input blobs
[ INFO ] Batch size is
[ INFO ] Preparing output blobs
[ INFO ] Loading model to the device
[ INFO ] Create infer request
[ WARNING ] Image is resized from (, ) to (, )
[ WARNING ] Image is resized from (, ) to (, )
[ WARNING ] Image is resized from (, ) to (, )
[ WARNING ] Image is resized from (, ) to (, )
[ WARNING ] Image is resized from (, ) to (, )
[ WARNING ] Image is resized from (, ) to (, )
[ WARNING ] Image is resized from (, ) to (, )
[ WARNING ] Image is resized from (, ) to (, )
[ INFO ] Batch Size is
[ WARNING ] Number of images 8dosen't match batch size 32
[ WARNING ] Number of images to be processed is
[ INFO ] Start inference
[ INFO ] Processing output blobs
-- 0.452099
[,] element, prob = 0.851202 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.495117 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.376695 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.337178 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.668834 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.558071 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.432652 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.313619 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.488229 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.885867 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.305516 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.332538 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.992781 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.988277 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.981469 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.94848 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.428106 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.978832 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.333557 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.985633 (-,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.882272 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.874527 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.850498 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.844409 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.787552 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.748578 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.735457 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.712015 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.689215 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.620327 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.614535 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.609089 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.604894 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.554959 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.549844 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.404613 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.366167 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.320608 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.996094 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.9818 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.517957 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.302339 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.98227 (,)-(,) batch id : WILL BE PRINTED!
[,] element, prob = 0.924668 (,)-(,) batch id : WILL BE PRINTED!
[ INFO ] Image out_0.bmp created!
[ INFO ] Image out_1.bmp created!
[ INFO ] Image out_2.bmp created!
[ INFO ] Image out_3.bmp created!
[ INFO ] Image out_4.bmp created!
[ INFO ] Image out_5.bmp created!
[ INFO ] Image out_6.bmp created!
[ INFO ] Image out_7.bmp created!
[ INFO ] Execution successful [ INFO ] This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool

OpenVINO 目标检测底层C++代码改写实现(待优化)的更多相关文章

  1. Mask R-CNN用于目标检测和分割代码实现

    Mask R-CNN用于目标检测和分割代码实现 Mask R-CNN for object detection and instance segmentation on Keras and Tenso ...

  2. 使用Faster R-CNN做目标检测 - 学习luminoth代码

    像玩乐高一样拆解Faster R-CNN:详解目标检测的实现过程 https://mp.weixin.qq.com/s/M_i38L2brq69BYzmaPeJ9w 直接参考开源目标检测代码lumin ...

  3. tensorflow C++接口调用目标检测pb模型代码

    #include <iostream> #include "tensorflow/cc/ops/const_op.h" #include "tensorflo ...

  4. 关于目标检测(Object Detection)的文献整理

    本文对CV中目标检测子方向的研究,整理了如下的相关笔记(持续更新中): 1. Cascade R-CNN: Delving into High Quality Object Detection 年份: ...

  5. FAIR开源Detectron:整合全部顶尖目标检测算法

    昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标检测平台. 昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标 ...

  6. One Stage目标检测

    在计算机视觉中,目标检测是一个难题.在大型项目中,首先需要先进行目标检测,得到对应类别和坐标后,才进行之后的各种分析.如人脸识别,通常是首先人脸检测,得到人脸的目标框,再对此目标框进行人脸识别.如果该 ...

  7. ICCV2021 | TOOD:任务对齐的单阶段目标检测

    ​前言  单阶段目标检测通常通过优化目标分类和定位两个子任务来实现,使用具有两个平行分支的头部,这可能会导致两个任务之间的预测出现一定程度的空间错位.本文提出了一种任务对齐的一阶段目标检测(TOOD) ...

  8. 基于Intel OpenVINO的搭建及应用,包含分类,目标检测,及分割,超分辨

    PART I: 搭建环境OPENVINO+Tensorflow1.12.0 I: l_openvino_toolkit_p_2019.1.094 第一步常规安装参考链接:https://docs.op ...

  9. 第十九节、基于传统图像处理的目标检测与识别(词袋模型BOW+SVM附代码)

    在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视 ...

随机推荐

  1. 【转】struts2的ActionInvocation分析(action调度者)

    一个ActionInvocation实例代表一个action的执行状态,持有拦截器和将要执行的action的实例. defaultActionInvocation是其默认实现.下面是定义在该类中的部分 ...

  2. 前后端通信—webSocket(支持跨域)

    WebSocket 的介绍 WebSocket 是什么 WebSocket 是一种网络通信协议.RFC6455 定义了它的通信标准. WebSocket 是 HTML5 开始提供的一种在单个 TCP ...

  3. 理解CMS GC日志

    本文翻译自:https://blogs.oracle.com/poonam/entry/understanding_cms_gc_logs 准备工作 JVM的GC日志的主要参数包括如下几个:-XX:+ ...

  4. golang--单元测试综合实例

    实例说明: (1)一个Monster结构体,字段Name,Age,Skill (2)Monster有一个Store方法,可以将一个Monster对象序列化后保存在文件中: (3)Monster有一个R ...

  5. iOS性能优化-数组、字典便利时间复杂

    上图是几种时间复杂度的关系,性能优化一定程度上是为了降低程序执行效率减低时间复杂度. 如下是几种时间复杂度的实例: O(1) return array[index] == value; 复制代码 O( ...

  6. VMware workstation 12虚拟机安装CentOS7详细安装教程

    虚拟机(Virtual Machine)指通过软件模拟的具有完整硬件系统功能的.运行在一个完全隔离环境中的完整计算机系统. 虚拟系统通过生成现有操作系统的全新虚拟镜像,它具有真实windows系统完全 ...

  7. 离线缓存 Visual Studio 2019 (VS2019)的方法

    1. 下面是以管理员身份运行命令行: https://docs.microsoft.com/en-us/visualstudio/install/workload-component-id-vs-en ...

  8. ASP.NET web.config 配置里部分参数详细说明

    Session配置 <!-- <identity impersonate = "false" [true|false] userName = "" ...

  9. 2019前端UI框架排行榜

    一.Mint UI 流行指数:★★★★ Mint UI是 饿了么团队开发基于 Vue.js 的移动端UI框架,它包含丰富的 CSS 和 JS 组件,能够满足日常的移动端开发需要. 官网:https:/ ...

  10. DevExpress的TreeList的常用属性设置以及常用事件

    场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...