思路很巧妙的一道题 ~

这个应该不完全是正解,复杂度约为 $O(3\times 10^8)$,有时间再研究研究正解.

首先,最裸的暴力是按照权值从小到大枚举每一个数,然后枚举后面的数来更新方案数,是 $O(n^2)$ 的.

然后,我们可以用lucas定理来模拟那个组合数,会发现只需满足大数&小数=小数即可.

这个的话可以枚举子集,复杂度就是 $O(3^{18})$ 左右的,大概能过 ~

code:

#include <bits/stdc++.h>
#define ll long long
#define N 300000
#define MAX 233333
#define mod 1000000007
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int f[N],pos[N];
int main()
{
// setIO("input");
int i,j,n,ans=0;
scanf("%d",&n);
for(i=1;i<=n;++i)
{
int x;
scanf("%d",&x);
pos[x]=i;
}
for(i=1;i<=233333;++i)
{
if(pos[i])
{
for(j=i&(i-1);j;j=i&(j-1))
{
if(pos[j]>pos[i])
{
f[i]=(f[i]+f[j]+1)%mod;
}
}
}
}
for(i=1;i<=233333;++i) ans=(ans+f[i])%mod;
printf("%d\n",ans);
return 0;
}

  

BZOJ 4903: [Ctsc2017]吉夫特 数论+dp的更多相关文章

  1. BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)

    题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...

  2. bzoj 4903: [Ctsc2017]吉夫特【lucas+状压dp】

    首先根据lucas, \[ C_n^m\%2=C_{n\%2}^{m\%2}*C_{n/2}^{m/2} \] 让这个式子的结果为计数的情况只有n&m==m,因为m的每一个为1的二进制位都需要 ...

  3. 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp

    题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...

  4. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  5. [BZOJ 4033] [HAOI2015] T1 【树形DP】

    题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...

  6. 【bzoj1408】[Noi2002]Robot 数论+dp

    题目描述 输入 输出 样例输入 3 2 1 3 2 5 1 样例输出 8 6 75 题解 语文题+数论+dp 花了大段讲述什么叫mu,什么叫phi,只是新定义的mu将2看作有平方因子,新定义的phi( ...

  7. Bzoj 1055: [HAOI2008]玩具取名 (区间DP)

    Bzoj 1055: [HAOI2008]玩具取名 (区间DP) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1055 区间动态规划和可 ...

  8. [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)

    [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...

  9. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

随机推荐

  1. .NET Core如何使用NLog

    1.新建ASP.NET Core项目 1.1选择项目 1.2选择.Net版本 2. 添加NLog插件 2.1 通过Nuget安装 2.2下载相关的插件 3.修改NLog配置文件 3.1添加NLog配置 ...

  2. Java基础扫盲系列(-)—— String中的format

    Java基础扫盲系列(-)-- String中的format 以前大学学习C语言时,有函数printf,能够按照格式打印输出的内容.但是工作后使用Java,也没有遇到过格式打印的需求,今天遇到项目代码 ...

  3. RocketMQ Release Note(RocketMQ升级日志译文)

    RocketMQ升级日志 1 4.2.0 原版Release Note 1.1 New Feature 支持传输层安全性 客户端支持log4j2 PushConsumer支持条数与大小维度的流控 1. ...

  4. Bagging 和RF的区别

    跑训练无聊看了看别人的面经,发现自己一时半会答不上来,整理一下. 一.Bagging介绍 先看一个Bagging的一个概念图(图来自https://www.cnblogs.com/nickchen12 ...

  5. TServerSocket组件

    主要作为服务器端的套接字管理器使用.它封装了服务器端的套接字.在打开套接字后,服务器端就处于监听状态,在接收到其它机器的连接请求后,与客户端建立连接,创建一个新的套接字,用于和客户端互传数据,此时TS ...

  6. C#中真正的属性

    引言 我们以前课堂上说的类当中的“属性”,其实官方叫法是“字段”或者“域”域(Field).正常使用,把它们当属性理解更加方便快捷,也没有什么问题. 如果要在微软的mvc中充分利用类带来的便利,就有必 ...

  7. [K8s 1.9实践]Kubeadm 1.9 HA 高可用 集群 本地离线镜像部署

    k8s介绍 k8s 发展速度很快,目前很多大的公司容器集群都基于该项目,如京东,腾讯,滴滴,瓜子二手车,北森等等. kubernetes1.9版本发布2017年12月15日,每是那三个月一个迭代, W ...

  8. 70.JS---利用原生js做手机端网页自适应解决方案rem布局

    利用原生js做手机端网页自适应解决方案rem布局 刚开始我用的是下面这段代码,然后js通过外部链接引入,最后每次用手机刷新网页的时候都会出现缩略图 function getRem(pwidth, pr ...

  9. windows mysql服务器

    安装完mysql服务器后,需要启动服务器, 才可提供数据库存储服务.windows上如何启动和关闭mysql服务器呢? 1. 启动 进入mysql的安装目录,如D:\Program Files\mys ...

  10. Xinetd超级守护进程

    Xinetd超级守护进程 00.什么是xinetd服务 xinetd(extended Internet services daemon), 是新一代网络守护进程服务程序, 又叫超级守护进程. 经常用 ...