问题描述:

给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应该如何选择装入背包的物品,是的装入背包中物品的总价值最大?

细节须知:

暂无。

算法原理:

a.最优子结构性质

0-1背包问题具有最优子结构性质。设(y1,y2,…,yn)是所给0-1背包问题的一个最优解,则(y2,…,yn)是下面相应子问题的一个最优解。

b.递归关系

设所给0-1背包问题的子问题

的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。有0-1背包问题的最优子结构性质,可以建立如下计算m(i,j)的递归式

 #include <iostream>
#include <fstream>
#include <ctime>
#include <algorithm>
#include <windows.h>
using namespace std;
#define N 10000 //int w[5] = { 0 , 2 , 3 , 4 , 5 }; //商品的体积2、3、4、5
//int v[5] = { 0 , 3 , 4 , 5 , 6 }; //商品的价值3、4、5、6
//int bagV = 8; //背包大小
int dp[N][N]; //动态规划表
//int item[5]; //最优解情况 void findMax(int k,int n,int w[],int v[]) { //动态规划
for (int i = ; i <= k; i++) {
for (int j = ; j <= n; j++) {
if (j < w[i])
dp[i][j] = dp[i - ][j];
else
dp[i][j] = max(dp[i - ][j], dp[i - ][j - w[i]] + v[i]);
}
}
} void findWhat(int i, int j,int w[],int v[],int item[]) { //最优解情况
if (i > ) {
if (dp[i][j] == dp[i - ][j]) {
item[i] = ;
findWhat(i - , j,w,v,item);
}
else if (j - w[i] >= && dp[i][j] == dp[i - ][j - w[i]] + v[i]) {
item[i] = ;
findWhat(i - , j - w[i],w,v,item);
}
}
} void print(int k,int n,int item[]) {
/*for (int i = 0; i < k+1; i++) { //动态规划表输出
for (int j = 0; j < n+1; j++) {
cout << dp[i][j] << ' ';
}
cout << endl;
}
cout << endl;*/
cout <<"The item number that should be put into the backpack is:";
for (int i = ; i < k+; i++){ //最优解输出
if(item[i] == )
cout << i << ' ';
}
cout << endl;
} int main(void)
{
LARGE_INTEGER nFreq;
LARGE_INTEGER nBeginTime;
LARGE_INTEGER nEndTime;
ofstream fout;
double cost;
int i,j,m,n,k;
cout << "Please enter the number of times you want to run the program:";
cin >> m;
//int object_amount[m];
//double runtime[m];
fout.open("backpack.txt",ios::app);
if(!fout){
cerr<<"Can not open file 'backpack.txt' "<<endl;
return -;
}
fout.setf(ios_base::fixed,ios_base::floatfield); //防止输出的数字使用科学计数法
srand((unsigned int)time(NULL));
for(i = ; i < m; i++){
n = rand()%;
k = rand()%;
//object_amount[i] = k;
fout<<k<<",";
int item[k];
cout << "The " << i+ << "th test's backpack lattice number is:" << n << endl;
cout << "The " << i+ << "th test's object amount is:" << k << endl;
int w[k];
int v[k];
memset(dp,,sizeof(dp));
w[] = ;
v[] = ;
for(j=;j<k;j++){
w[j]=rand()%;
v[j]=rand()%;
}
QueryPerformanceFrequency(&nFreq);
QueryPerformanceCounter(&nBeginTime);
findMax(k,n,w,v);
findWhat(k,n,w,v,item);
print(k,n,item);
QueryPerformanceCounter(&nEndTime);
cost=(double)(nEndTime.QuadPart - nBeginTime.QuadPart) / (double)nFreq.QuadPart;
//runtime[i]=cost;
fout<<cost<<endl;
cout<<"The running time is:"<<cost<<" s"<<endl;
}
/* fout.open("backpack.txt",ios::app);
if(!fout){
cerr<<"Can not open file 'backpack.txt' "<<endl;
return -1;
}
fout.setf(ios_base::fixed,ios_base::floatfield); //防止输出的数字使用科学计数法
for(i=0;i<m;i++){
fout<<object_amount[i]<<","<<runtime[i]<<endl;
}*/
fout.close();
cout<<"Success!"<<endl;
return ;
}

程序设计思路:

根据算法原理中所述递归关系,递归计算全部的m(i,j),得到不同情况下的最优解。

假设m[1][c]给出所要求的的0-1背包问题的最优值。相应的最优解计算如下:

如果m[1][c]=m[2][c],则x1=0;否则x1=1.当x1=0是,由m[2][c]继续构造最优解;当x1=1时,有m[2][c-w1]继续构造最优解。以此类推,可构造出相应的最优解(x1,x2,…,xn)。

时间复杂性分析:

从计算m(i,j)的递归式容易看出,对于0-1背包问题的求解算法需要O(nc)计算时间,而算法解出最优方案需要O(n)计算时间,当背包容量c很大时,算法需要的计算时间较多。

生成的数据可导入EXCEL中进行数据分析生成分析图表。

C++动态规划求解0-1背包问题的更多相关文章

  1. Java实现动态规划法求解0/1背包问题

    摘要: 使用动态规划法求解0/1背包问题. 难度: 初级 0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进 ...

  2. hdu2602Bone Collector ——动态规划(0/1背包问题)

    Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collec ...

  3. 背包问题(Knapsack problem)采用动态规划求解

    问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物品,假设是水果好了,水果的编号.单价与重量如下所示:0李子4KGNT$45001苹果5KGNT$57002橘子2 ...

  4. 0-1背包问题——动态规划求解【Python】

    动态规划求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 动态规划核心:计算并存储小问题的最优解,并将这些最 ...

  5. 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列

    0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...

  6. 蓝桥杯 0/1背包问题 (java)

      今天第一次接触了0/1背包问题,总结一下,方便以后修改.不对的地方还请大家不啬赐教! 上一个蓝桥杯的例题: 数据规模和约定 代码: import java.util.Scanner; public ...

  7. 动态规划 求解 Minimum Edit Distance

    http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...

  8. 动态规划:HDU1059-Dividing(多重背包问题的二进制优化)

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. 动态规划求解序列问题(LIS、JLIS)

    1. 最长递增子序列 不要求位置连续:要求大小严格递增(strictly increasing) 穷举法解题 首先以每个数字为单位分割寻找最长递增子序列: int lis(const vector&l ...

随机推荐

  1. maven 学习---Maven本地资源库

    Maven的本地资源库是用来存储所有项目的依赖关系(插件jar和其他文件,这些文件被Maven下载)到本地文件夹. 很简单,当你建立一个Maven项目,所有相关文件将被存储在你的Maven本地仓库. ...

  2. android studio学习----添加项目库

    Library Project(库项目) compile project(':library') 引用名称为 library 的 module .需要注意的是,被引用的 module 需要在 {@pr ...

  3. Android 自定义ListView动态加载数据

    我们都知道网络取数据是耗时操作,如果我们一次性请求所有数据,假如数据量不多那还可以接受,但是如果数据量特别多,那么带来的后果就是用户的愤怒(用户是很没有耐心的),所以这时候我们就需要动态的加载数据,分 ...

  4. MElv2.kkkK

    MElv2.kkkK 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 • Estimate ...

  5. Mysql数据库之调整最大连接数

    .查看最大连接数 show variables like '%max_connections%'; 2.修改最大连接数 set GLOBAL max_connections = 200; 以下的文章主 ...

  6. python 验证码识别示例(五) 简单验证码识别

    今天介绍一个简单验证的识别. 主要是标准的格式,没有扭曲和变现.就用 pytesseract 去识别一下. 验证码地址:http://wscx.gjxfj.gov.cn/zfp/webroot/xfs ...

  7. LCD裸板编程_框架

    lcd程序框架: 为了让程序更好的扩展,介绍面向对象编程: 比如抽象出lcd_3.5和lcd_4.3的共同点: 当我想使用3.5寸的lcd时,只需让lo指向lcd_3.5_opr即可.同样,当我想使用 ...

  8. 16-cmake语法-OpeCV3.3.1_CMakeLists.txt的部分注释

    OpeCV3.3.1 的 CMakeLists.txt 的部分注释. # Disable in-source builds to prevent source tree corruption. # @ ...

  9. scrapy框架--?乱码unicode

    安装 pip install scrapy 建立一个爬虫项目 scrapy startproject 项目名称 scrapy startproject itcast 进入itcast文件夹 生成一个爬 ...

  10. 前端js判空处理,js字符串判空,js数组判空

    1.字符串 在 js 中,字符串为空会有这么几种形式,"",null,undefined,如果在已知变量为空串的情况下可以直接采用 if (string.length == 0) ...