为什么Redis单线程却能支撑高并发?
作者:Draveness
原文链接:draveness.me/redis-io-multiplexing
最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。
几种 I/O 模型
为什么 Redis 中要使用 I/O 多路复用这种技术呢?
首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的。
Blocking I/O
先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 read 或者 write 对某一个文件描述符(File Descriptor 以下简称 FD)进行读写时,如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其它的操作作出响应,导致整个服务不可用。
这也就是传统意义上的,也就是我们在编程中使用最多的阻塞模型:
阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。
I/O 多路复用
虽然还有很多其它的 I/O 模型,但是在这里都不会具体介绍。
阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli),这里涉及的就是 I/O 多路复用模型了:
在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时,select 方法就会返回可读以及可写的文件描述符个数。
关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;
与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。
Reactor 设计模式
Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)
文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 accept、read、write 和 close 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。
虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。
I/O 多路复用模块
I/O 多路复用模块封装了底层的 select、epoll、avport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。
在这里我们简单介绍 Redis 是如何包装 select 和 epoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:
static int aeApiCreate(aeEventLoop *eventLoop)
static int aeApiResize(aeEventLoop *eventLoop, int setsize)
static void aeApiFree(aeEventLoop *eventLoop)
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask)
static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int mask)
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp)
同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState 来存储需要的上下文信息:
// select
typedef struct aeApiState {
fd_set rfds, wfds;
fd_set _rfds, _wfds;
} aeApiState;
// epoll
typedef struct aeApiState {
int epfd;
struct epoll_event *events;
} aeApiState;
这些上下文信息会存储在 eventLoop 的 void *state 中,不会暴露到上层,只在当前子模块中使用。
封装 select 函数
select 可以监控 FD 的可读、可写以及出现错误的情况。
在介绍 I/O 多路复用模块如何对 select 函数封装之前,先来看一下 select 函数使用的大致流程:
int fd = /* file descriptor */
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(fd, &rfds)
for ( ; ; ) {
select(fd+1, &rfds, NULL, NULL, NULL);
if (FD_ISSET(fd, &rfds)) {
/* file descriptor `fd` becomes readable */
}
}
初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD;
使用 FD_SET 将 fd 加入 rfds;
调用 select 方法监控 rfds 中的 FD 是否可读;
当 select 返回时,检查 FD 的状态并完成对应的操作。
而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfds 和 wfds:
static int aeApiCreate(aeEventLoop *eventLoop) {
aeApiState *state = zmalloc(sizeof(aeApiState));
if (!state) return -1;
FD_ZERO(&state->rfds);
FD_ZERO(&state->wfds);
eventLoop->apidata = state;
return 0;
}
而 aeApiAddEvent 和 aeApiDelEvent 会通过 FD_SET 和 FD_CLR 修改 fd_set 中对应 FD 的标志位:
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
aeApiState *state = eventLoop->apidata;
if (mask & AE_READABLE) FD_SET(fd,&state->rfds);
if (mask & AE_WRITABLE) FD_SET(fd,&state->wfds);
return 0;
}
整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoop 的 fired 数组中,并返回事件的个数:
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
aeApiState *state = eventLoop->apidata;
int retval, j, numevents = 0;
memcpy(&state->_rfds,&state->rfds,sizeof(fd_set));
memcpy(&state->_wfds,&state->wfds,sizeof(fd_set));
retval = select(eventLoop->maxfd+1,
&state->_rfds,&state->_wfds,NULL,tvp);
if (retval > 0) {
for (j = 0; j <= eventLoop->maxfd; j++) {
int mask = 0;
aeFileEvent *fe = &eventLoop->events[j];
if (fe->mask == AE_NONE) continue;
if (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds))
mask |= AE_READABLE;
if (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds))
mask |= AE_WRITABLE;
eventLoop->fired[numevents].fd = j;
eventLoop->fired[numevents].mask = mask;
numevents++;
}
}
return numevents;
}
封装 epoll 函数
Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd:
static int aeApiCreate(aeEventLoop *eventLoop) {
aeApiState *state = zmalloc(sizeof(aeApiState));
if (!state) return -1;
state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);
if (!state->events) {
zfree(state);
return -1;
}
state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */
if (state->epfd == -1) {
zfree(state->events);
zfree(state);
return -1;
}
eventLoop->apidata = state;
return 0;
}
在 aeApiAddEvent 中使用 epoll_ctl 向 epfd 中添加需要监控的 FD 以及监听的事件:
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
aeApiState *state = eventLoop->apidata;
struct epoll_event ee = {0}; /* avoid valgrind warning */
/* If the fd was already monitored for some event, we need a MOD
* operation. Otherwise we need an ADD operation. */
int op = eventLoop->events[fd].mask == AE_NONE ?
EPOLL_CTL_ADD : EPOLL_CTL_MOD;
ee.events = 0;
mask |= eventLoop->events[fd].mask; /* Merge old events */
if (mask & AE_READABLE) ee.events |= EPOLLIN;
if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;
ee.data.fd = fd;
if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;
return 0;
}
由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况;在 epoll_wait 函数返回时会提供一个 epoll_event 数组:
typedef union epoll_data {
void *ptr;
int fd; /* 文件描述符 */
uint32_t u32;
uint64_t u64;
} epoll_data_t;
struct epoll_event {
uint32_t events; /* Epoll 事件 */
epoll_data_t data;
};
其中保存了发生的 epoll 事件(EPOLLIN、EPOLLOUT、EPOLLERR 和 EPOLLHUP)以及发生该事件的 FD。
aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoop 的 fired 数组中,将信息传递给上层模块:
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
aeApiState *state = eventLoop->apidata;
int retval, numevents = 0;
retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,
tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1);
if (retval > 0) {
int j;
numevents = retval;
for (j = 0; j < numevents; j++) {
int mask = 0;
struct epoll_event *e = state->events+j;
if (e->events & EPOLLIN) mask |= AE_READABLE;
if (e->events & EPOLLOUT) mask |= AE_WRITABLE;
if (e->events & EPOLLERR) mask |= AE_WRITABLE;
if (e->events & EPOLLHUP) mask |= AE_WRITABLE;
eventLoop->fired[j].fd = e->data.fd;
eventLoop->fired[j].mask = mask;
}
}
return numevents;
}
子模块的选择
因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口;在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:
#ifdef HAVE_EVPORT
#include "ae_evport.c"
#else
#ifdef HAVE_EPOLL
#include "ae_epoll.c"
#else
#ifdef HAVE_KQUEUE
#include "ae_kqueue.c"
#else
#include "ae_select.c"
#endif
#endif
#endif
因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:
Redis 会优先选择时间复杂度为 $O(1)$
的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。
但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 $O(n)$
,并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。
总结
Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。
整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。
参考
http://man7.org/linux/man-pages/man2/select.2.html
更多文章
为什么Redis单线程却能支撑高并发?的更多相关文章
- 为什么 redis 单线程却能支撑高并发
redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 这个是问 redis 的时候,最基本的问题吧,redis 最基本的一个内部原理 ...
- 2.redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发?
作者:中华石杉 面试题 redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 面试官心理分析 这个是问 redis 的时候,最基本的 ...
- Redis 单线程却能支撑高并发 - 简书 https://www.jianshu.com/p/2d293482f272
小结: 1.在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况:2.Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一 ...
- redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发?
redis 和 memcached 有啥区别? redis 支持复杂的数据结构 redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作.如果需要缓存能够支持更复杂的结构 ...
- 为什么Redis 单线程却能支撑高并发?
作者:Draveness 原文:draveness.me/redis-io-multiplexing 推荐阅读 1. Java 性能优化:教你提高代码运行的效率 2. 基于token的多平台身份认证架 ...
- redis和memcached有什么区别?redis的线程模型是什么?为什么单线程的redis比多线程的memcached效率要高得多(为什么redis是单线程的但是还可以支撑高并发)?
1.redis和memcached有什么区别? 这个事儿吧,你可以比较出N多个区别来,但是我还是采取redis作者给出的几个比较吧 1)Redis支持服务器端的数据操作:Redis相比Memcache ...
- 关于Redis的几件小事 | 高并发和高可用
如果你用redis缓存技术的话,肯定要考虑如何用redis来加多台机器,保证redis是高并发的,还有就是如何让Redis保证自己不是挂掉以后就直接死掉了. redis高并发:主从架构,一主多从,一般 ...
- Redis高级功能-1、高并发基本概述
1.可能的问题 要将redis运用到工程项目中,只使用一台redis是万万不能的,原因如下: (1)从结构上,单个redis服务器会发生单点故障,并且一台服务器需要处理所有的请求负载,压力较大. (2 ...
- Nodejs:单线程为什么能支持高并发?
1.Nodejs是一个平台,构建在chrome的V8上(js语言解释器),采用事件驱动.非阻塞模型( c++库:libuv). 参考官方: Node.js is a platform built ...
随机推荐
- L1434滑雪
一,看题 1,这个长度怎么算的. 从它自己数,可以走下去的位置. 2,这个题的衣服怎么披上去呀. 3,搜索目标,状态. 肯定要用坐标,不然怎么搜索. 4,在前期还是多写把. 5,我靠这个点还是随机的& ...
- 修改git 提交的用户名和用户Email命令
首页先查看全局配置:git config --list git config --local --list 法一:使用命令修改git的用户名和提交的邮箱 )修改全局 如果你要修改当前全局的用户名和邮箱 ...
- Educational Codeforces Round 67
Educational Codeforces Round 67 CF1187B Letters Shop 二分 https://codeforces.com/contest/1187/submissi ...
- 小数据池/is和==/再谈编码作业
# 1,老男孩好声选秀大赛评委在打分的时候呢, 可以输入分数. 假设, 老男孩有10个评委. 让10个评委进行打分, 要求, 分数必须高于5分, 低于10分.将每个评委的打分情况保存在列表中. pin ...
- 第12组 Alpha事后诸葛亮
Header 组长博客 Postmortem 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 要解决的是喜欢记录分享旅游生活的人群的行迹记录和分享问题, ...
- tengine负载均衡高可用配置
环境 Tengine-master:192.168.109.100 Tengine-slave:192.168.109.101 tomcat01:192.168.109.102 tomcat02:19 ...
- mysql下sql语句令某字段值等于原值加上一个字符串
MYSQL在一个字段值后面加字符串,如下: member 表名 card 字段名 update member SET card = '00' || card; (postgreSQL 用 || 来连贯 ...
- 【Excel】多条件查找
例如下图:要求在单元格从C10中根据分类与名称找出相应的数量 1.VLOOKUP函数(数组公式) {=VLOOKUP(A10&B10,IF({1,0},A2:A6&B2:B6,C2:C ...
- python使用ldap3进行接口调用
把自己使用到的ldap调用的代码分享出来,希望大家可以参考 #!/usr/bin/python # -*- coding: utf-8 -*- """ @Time : 2 ...
- css3学习之--transition属性(过渡)
一.理解transition属性 W3C标准中对CSS3的transition是这样描述的: CSS的transition允许CSS的属性值在一定的时间区间内平滑地过渡.这种效果可以在鼠标单击,获得焦 ...