P2996

传送门

题意:

给你一棵树,每一条边上最多选一个点,问你选的点数.

我的思想:

一开始我是想用黑白点染色的思想来做,就是每一条边都选择一个点.

可以跑两边一遍在意的时候染成黑,第二遍染成白,取一个最大值.

就可以得到\(30\)分的高分.

#include <bits/stdc++.h>
#define N 100010
#define M 1010
#define _ 0 using namespace std;
int n, tot, ans, add_edge, color[N], head[N];
struct node {
int next, to;
}edge[N]; int read() {
int s = 0, f = 0; char ch = getchar();
while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
return f ? -s : s;
} void add(int from, int to) {
edge[++add_edge].next = head[from];
edge[add_edge].to = to;
head[from] = add_edge;
} void dfs(int x, int fx) {
if (color[fx] == 0) {
color[x] = 1;
tot++;
}
for (int i = head[x]; i; i = edge[i].next) {
int to = edge[i].to;
if (to == fx) continue;
dfs(to, x);
}
} int main() {
n = read();
int point;
for (int i = 1, x, y; i < n; i++) {
x = read(), y = read();
add(x, y), add(y, x);
point = x;
}
dfs(point, 0);
ans = max(ans, tot);
memset(color, 0, sizeof (color));
tot = 0, color[0] = 1;
dfs(point, 0);
cout << max(ans, tot);
}

很明显这样做是错误的.来看这样一组样例.



按照上述方法跑出来就是\(5\),显然答案是\(7\).然后我就是这样被学长\(hack\)了.

然后就问了学长树形\(DP\).

正确思路:

我们设\(dp[i][1/0]\)来表示\(i\)与\(i\)的子树在\(i\),选还是不选,时的最大权值.

然后又因为在\(dp[i][1]\)时他的子节点不能选\(dp[to][1]\).

在\(dp[i][0]\)时都可以选.我们就可以得到这样的转移方程(用\(to\)来表示\(i\)的子节点):

\[dp[x][0] += max(dp[to][1], dp[to][0]);
\]

\[dp[x][1] += dp[to][0];
\]

然后就做完了.

code :

#include <bits/stdc++.h>
#define N 100010
#define M 50010
#define _ 0 using namespace std;
int n, add_edge, head[N];
int dp[M][2];
struct node {
int next, to;
}edge[N]; int read() {
int s = 0, f = 0; char ch = getchar();
while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
return f ? -s : s;
} void add(int from, int to) {
edge[++add_edge].next = head[from];
edge[add_edge].to = to;
head[from] = add_edge;
} void dfs(int x, int fx) {
dp[x][1] = 1;
for (int i = head[x]; i; i = edge[i].next) {
int to = edge[i].to;
if (to == fx) continue;
dfs(to, x);
dp[x][0] += max(dp[to][1], dp[to][0]);
dp[x][1] += dp[to][0];
}
} int main() {
n = read();
for (int i = 1, x, y; i < n; i++) {
x = read(), y = read();
add(x, y), add(y, x);
}
dfs(1, 0);
cout << max(dp[1][0], dp[1][1]);
}

洛谷 P2996 [USACO10NOV]拜访奶牛Visiting Cows的更多相关文章

  1. 洛谷P2996 [USACO10NOV]拜访奶牛Visiting Cows

    题目 树形dp 设f[i][j]表示走到第i号节点的最大权值 j为0/1表示这个点选或者不选 如果这个点不选 就从他的子树里的选或者不选选最大 如果这个点选 就加上他子树的不选 f[x][0] += ...

  2. [P2996][USACO10NOV]拜访奶牛Visiting Cows (树形DP)

    之前写在洛谷,结果没保存,作废…… 听说考前写题解RP++哦 思路 很容易想到是 树形DP 如果树形DP不知道是什么的话推荐百度一下 我在这里用vector储存边 设状态f[i][0]为i点不访问,f ...

  3. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...

  4. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  5. 洛谷 P3088 [USACO13NOV]挤奶牛Crowded Cows 题解

    P3088 [USACO13NOV]挤奶牛Crowded Cows 题目描述 Farmer John's N cows (1 <= N <= 50,000) are grazing alo ...

  6. 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  7. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  8. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

    题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...

  9. 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...

随机推荐

  1. Linux内核定时器struct timer_list

    1.前言 Linux内核中的定时器是一个很常用的功能,某些需要周期性处理的工作都需要用到定时器.在Linux内核中,使用定时器功能比较简单,需要提供定时器的超时时间和超时后需要执行的处理函数. 2.常 ...

  2. Vue.js 源码分析(十) 基础篇 ref属性详解

    ref 被用来给元素或子组件注册引用信息.引用信息将会注册在父组件的 $refs 对象上.如果在普通的 DOM 元素上使用,引用指向的就是 DOM 元素:如果用在子组件上,引用就指向组件实例,例如: ...

  3. git自动提交脚本

    每次在linux都要重新一遍一遍敲着这些重复的代码,我想着能够优化一下,做个一键脚本,减少重复劳动. #!/bin/bash git status read -r -p "是否继续提交? [ ...

  4. 微信小程序起步

    微信小程序 文档 微信小程序开发文档 本质 so微信小程序到底是什么?是原生的app还是H5应用? 简单来说,小程序是一种应用,运行的环境是微信(App)进程中,使用了部分的H5技术 目录介绍 app ...

  5. Windows 10 更新补丁后Visual Studio 2017 运行项目出现错误

    问题: 今天更新了Windows 10(版本 1709)推送最新补丁后,打开Visual Studio 2017运行Web项目,都出现“指定的参数超出有效值的范围 参数名:site”,如下图: 解决方 ...

  6. 初识Markdown

    目录 一.基础语法 二.语法规则 1.标题 2.列表 3.文字格式 4.链接 5.图片 6.引用 7.水平分隔线 8.代码块 9.表格 10.文档目录 11.转义定义 写在前面 Markdown(简称 ...

  7. ASP.NET Core 3.0 解决无法将“Add-Migration”项识别为 cmdlet、函数、脚本文件或可运行程序的名称错误

    写在前面 在 ASP.NET Core 的项目中 使用 CodeFirst 的模式,进行初始化迁移时.出现如图所示的问题: 在度娘哪里查了半天之后,才从这个帖子里找到了答案.传送门 分析原因 ASP. ...

  8. 小白开学Asp.Net Core 《八》

    小白开学Asp.Net Core <八> — — .Net Core 数据保护组件 1.背景 我在搞(https://github.com/AjuPrince/Aju.Carefree)这 ...

  9. ASP.NET Core Caching简介

    在.NET Core中提供了Caching的组件.目前Caching组件提供了三种存储方式: Memory Redis SQLSever 1.Memeor Caching 新建一个ASP.NET Co ...

  10. 基于vue+springboot+docker网站搭建【一】 前言

      前言 开一个系列记录下一次从0开始搭建一个网站的过程.前后端项目都是在github找的开源项目,主要用于练习部署. 前端:vue.js 后端: spring-boot 搭建环境:centOS7.6 ...