Element-wise operations
Element-wise operations
An element-wise operation operates on corresponding elements between tensors.
Two tensors must have the same shape in order to perform element-wise operations on them.
Suppose we have the following two tensors(Both of these tensors are rank-2 tensors with a shape of 2 \(\times\) 2):
t1 = torch.tensor([
[1, 2],
[3, 4]
], dtype=torch.float32)
t2 = torch.tensor([
[9, 8],
[7, 6]
], dtype=torch.float32)
The elements of the first axis are arrays and the elements of the second axis are numbers.
# Example of the first axis
> print(t1[0])
tensor([1., 2.])
# Example of the second axis
> print(t1[0][0])
tensor(1.)
Addition is an element-wise operation.
> t1 + t2
tensor([[10., 10.],
[10., 10.]])
In fact, all the arithmetic operations, add, subtract, multiply, and divide are element-wise operations. There are two ways we can do this:
- Using these symbolic operations:
> t + 2
tensor([[3., 4.],
[5., 6.]])
> t - 2
tensor([[-1., 0.],
[1., 2.]])
> t * 2
tensor([[2., 4.],
[6., 8.]])
> t / 2
tensor([[0.5000, 1.0000],
[1.5000, 2.0000]])
- Or equivalently, these built-in tensor methods:
> t.add(2)
tensor([[3., 4.],
[5., 6.]])
> t.sub(2)
tensor([[-1., 0.],
[1., 2.]])
> t.mul(2)
tensor([[2., 4.],
[6., 8.]])
> t.div(2)
tensor([[0.5000, 1.0000],
[1.5000, 2.0000]])
Broadcasting tensors
Broadcasting is the concept whose implementation allows us to add scalars to higher dimensional tensors.
We can see what the broadcasted scalar value looks like using the broadcast_to()
Numpy function:
> np.broadcast_to(2, t.shape)
array([[2, 2],
[2, 2]])
//This means the scalar value is transformed into a rank-2 tensor just like t, and //just like that, the shapes match and the element-wise rule of having the same //shape is back in play.
Trickier example of broadcasting
t1 = torch.tensor([
[1, 1],
[1, 1]
], dtype=torch.float32)
t2 = torch.tensor([2, 4], dtype=torch.float32)
Even through these two tensors have differing shapes, the element-wise operation is possible, and broadcasting is what makes the operation possible.
> np.broadcast_to(t2.numpy(), t1.shape)
array([[2., 4.],
[2., 4.]], dtype=float32)
>t1 + t2
tensor([[3., 5.],
[3., 5.]])
When do we actually use broadcasting? We often need to use broadcasting when we are preprocessing our data, and especially during normalization routines.
Comparison operations are element-wise. For a given comparison operation between tensors, a new tensor of the same shape is returned with each element containing either a 0 or a 1.
> t = torch.tensor([
[0, 5, 0],
[6, 0, 7],
[0, 8, 0]
], dtype=torch.float32)
Let's check out some of the comparison operations.
> t.eq(0)
tensor([[1, 0, 1],
[0, 1, 0],
[1, 0, 1]], dtype=torch.uint8)
> t.ge(0)
tensor([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]], dtype=torch.uint8)
> t.gt(0)
tensor([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]], dtype=torch.uint8)
> t.lt(0)
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]], dtype=torch.uint8)
> t.le(7)
tensor([[1, 1, 1],
[1, 1, 1],
[1, 0, 1]], dtype=torch.uint8)
Element-wise operations using functions
Here are some examples:
> t.abs()
tensor([[0., 5., 0.],
[6., 0., 7.],
[0., 8., 0.]])
> t.sqrt()
tensor([[0.0000, 2.2361, 0.0000],
[2.4495, 0.0000, 2.6458],
[0.0000, 2.8284, 0.0000]])
> t.neg()
tensor([[-0., -5., -0.],
[-6., -0., -7.],
[-0., -8., -0.]])
> t.neg().abs()
tensor([[0., 5., 0.],
[6., 0., 7.],
[0., 8., 0.]])
Element-wise operations的更多相关文章
- 向量的一种特殊乘法 element wise multiplication
向量的一种特殊乘法 element wise multiplication 物体反射颜色的计算采用这样的模型: vec3 reflectionColor = objColor * lightColor ...
- [C2P1] Andrew Ng - Machine Learning
About this Course Machine learning is the science of getting computers to act without being explicit ...
- TensorRT 3:更快的TensorFlow推理和Volta支持
TensorRT 3:更快的TensorFlow推理和Volta支持 TensorRT 3: Faster TensorFlow Inference and Volta Support 英伟达Tens ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- Must Know Tips/Tricks in Deep Neural Networks
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) Deep Neural Networks, especially C ...
- [Tensorflow] Cookbook - Neural Network
In this chapter, we'll cover the following recipes: Implementing Operational Gates Working with Gate ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
随机推荐
- 使用fastjson将list、map转换成json,出现$ref
这是转换时出现的问题情况( map >> json ) 引用是通过"$ref"来表示的 引用 描述 "$ref":".." 上一 ...
- 北京交大yum
[base] name=CentOS-$releasever - Base #mirrorlist=http://mirrorlist.centos.org/?release=$releasever& ...
- Mark 创建路径(c#)-动态分段
http://bbs.esrichina-bj.cn/ESRI/viewthread.php?action=printable&tid=128564 public void CreateRou ...
- Office WORD如何输入长下划线
选中一段文字,点击下划线按钮,可以添加下划线 同样,选中一段空格,点下划线,也可以添加下划线
- Linux程序设计(搭建开发环境--curses)
看官们.咱们今天要说的内容.是前面内容的一点小补充,详细的内容是:安装curses开发包.以搭建 开发环境.闲话休说,言归正转. 我们在前面说过搭建开发环境的内容,主要说了开发环境中的GCC和VIM, ...
- Android——SlidingMenu学习总结
来源 SlidingMenu是github上比較火开源库.很强大,不但但是简单的设置实现两側滑动菜单,还能够设置菜单的阴影.渐变色.划动模式等. 下载地址:https://github.com/jfe ...
- strtok函数
strtok函数是cstring文件里的函数 strtok函数是cstring文件里的函数 其功能是截断字符串 原型为:char *strtok(char s[],const char *delin) ...
- leetcode_Repeated DNA Sequences
描写叙述: All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: &qu ...
- mysql最新版中文参考手册在线浏览
MySQL是最流行的开放源码SQL数据库管理系统,具有快速.可靠和易于使用的特点.同时MySQL也是一种关联数据库管理系统,具有很高的响应速度和灵活性.又因为mysql拥有良好的连通性.速度和安全性, ...
- Boost中的Timer的使用——计算时间流逝
使用Boost中的Timer库计算程序的运行时间 程序开发人员都会面临一个共同的问题,即写出高质量的代码完毕特定的功能.评价代码质量的一个重要标准就是算法的运行效率,也就是算法的运行时间.为了可靠的提 ...