Element-wise operations

An element-wise operation operates on corresponding elements between tensors.

Two tensors must have the same shape in order to perform element-wise operations on them.

Suppose we have the following two tensors(Both of these tensors are rank-2 tensors with a shape of 2 \(\times\) 2):

t1 = torch.tensor([
[1, 2],
[3, 4]
], dtype=torch.float32) t2 = torch.tensor([
[9, 8],
[7, 6]
], dtype=torch.float32)

The elements of the first axis are arrays and the elements of the second axis are numbers.

# Example of the first axis
> print(t1[0])
tensor([1., 2.]) # Example of the second axis
> print(t1[0][0])
tensor(1.)

Addition is an element-wise operation.

> t1 + t2
tensor([[10., 10.],
[10., 10.]])

In fact, all the arithmetic operations, add, subtract, multiply, and divide are element-wise operations. There are two ways we can do this:

  1. Using these symbolic operations:
> t + 2
tensor([[3., 4.],
[5., 6.]]) > t - 2
tensor([[-1., 0.],
[1., 2.]]) > t * 2
tensor([[2., 4.],
[6., 8.]]) > t / 2
tensor([[0.5000, 1.0000],
[1.5000, 2.0000]])
  1. Or equivalently, these built-in tensor methods:
> t.add(2)
tensor([[3., 4.],
[5., 6.]]) > t.sub(2)
tensor([[-1., 0.],
[1., 2.]]) > t.mul(2)
tensor([[2., 4.],
[6., 8.]]) > t.div(2)
tensor([[0.5000, 1.0000],
[1.5000, 2.0000]])

Broadcasting tensors

Broadcasting is the concept whose implementation allows us to add scalars to higher dimensional tensors.

We can see what the broadcasted scalar value looks like using the broadcast_to()Numpy function:

> np.broadcast_to(2, t.shape)
array([[2, 2],
[2, 2]])
//This means the scalar value is transformed into a rank-2 tensor just like t, and //just like that, the shapes match and the element-wise rule of having the same //shape is back in play.

Trickier example of broadcasting

t1 = torch.tensor([
[1, 1],
[1, 1]
], dtype=torch.float32) t2 = torch.tensor([2, 4], dtype=torch.float32)

Even through these two tensors have differing shapes, the element-wise operation is possible, and broadcasting is what makes the operation possible.

> np.broadcast_to(t2.numpy(), t1.shape)
array([[2., 4.],
[2., 4.]], dtype=float32) >t1 + t2
tensor([[3., 5.],
[3., 5.]])

When do we actually use broadcasting? We often need to use broadcasting when we are preprocessing our data, and especially during normalization routines.


Comparison operations are element-wise. For a given comparison operation between tensors, a new tensor of the same shape is returned with each element containing either a 0 or a 1.

> t = torch.tensor([
[0, 5, 0],
[6, 0, 7],
[0, 8, 0]
], dtype=torch.float32)

Let's check out some of the comparison operations.

> t.eq(0)
tensor([[1, 0, 1],
[0, 1, 0],
[1, 0, 1]], dtype=torch.uint8) > t.ge(0)
tensor([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]], dtype=torch.uint8) > t.gt(0)
tensor([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]], dtype=torch.uint8) > t.lt(0)
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]], dtype=torch.uint8) > t.le(7)
tensor([[1, 1, 1],
[1, 1, 1],
[1, 0, 1]], dtype=torch.uint8)

Element-wise operations using functions

Here are some examples:

> t.abs()
tensor([[0., 5., 0.],
[6., 0., 7.],
[0., 8., 0.]]) > t.sqrt()
tensor([[0.0000, 2.2361, 0.0000],
[2.4495, 0.0000, 2.6458],
[0.0000, 2.8284, 0.0000]]) > t.neg()
tensor([[-0., -5., -0.],
[-6., -0., -7.],
[-0., -8., -0.]]) > t.neg().abs()
tensor([[0., 5., 0.],
[6., 0., 7.],
[0., 8., 0.]])

Element-wise operations的更多相关文章

  1. 向量的一种特殊乘法 element wise multiplication

    向量的一种特殊乘法 element wise multiplication 物体反射颜色的计算采用这样的模型: vec3 reflectionColor = objColor * lightColor ...

  2. [C2P1] Andrew Ng - Machine Learning

    About this Course Machine learning is the science of getting computers to act without being explicit ...

  3. TensorRT 3:更快的TensorFlow推理和Volta支持

    TensorRT 3:更快的TensorFlow推理和Volta支持 TensorRT 3: Faster TensorFlow Inference and Volta Support 英伟达Tens ...

  4. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  5. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  6. Must Know Tips/Tricks in Deep Neural Networks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially C ...

  7. [Tensorflow] Cookbook - Neural Network

    In this chapter, we'll cover the following recipes: Implementing Operational Gates Working with Gate ...

  8. [Tensorflow] Cookbook - Object Classification based on CIFAR-10

    Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...

  9. Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)

    http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...

  10. [转]An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...

随机推荐

  1. 各种ORM框架对比(理论篇,欢迎来观摩,并且纠正部分错误,防止误区)

    各种ORM框架对比 目前框架有以下 PetaPoco Dapper.NET Massive Simple.Data Chain PetaPoco 轻量级,以前单文件,目前有维护形成项目级别,适合多个数 ...

  2. dpr——设备像素比(device pixel ratio)

    设备像素比 = 物理像素 / 逻辑像素 1.物理像素 显示器上最小的物理显示单元(像素颗粒),在操作系统的调度下,每一个设备像素都有自己的颜色值和亮度值. 例如:手机大小固定,物理像素越高,画面越清晰 ...

  3. mongodb按照日期分组统计

    目录 1.使用时间格式化方法 2.进行时间补偿(默认当前时区是东八区,即8x3600x1000=28800000) mongodb的默认时间是格林尼治时间,如果是要按照日期进行分组需要注意!!!. 解 ...

  4. 获取鼠标位置的几个通用的JS函数

    原文:http://www.open-open.com/code/view/1421401009218 /*两个通用函数,用于获取鼠标相对于整个页面的当前位置*/ function getX(e) { ...

  5. 【python】Python的字典get方法:从字典中获取一个值

    转自: http://blog.sina.com.cn/s/blog_6be89284010183xm.html

  6. 负载均衡之基于DNS负载

    基于DNS的负载平衡 OK,在了解了负载平衡系统的大致组成及使用方式之后.我们就来看看各种负载解决方式. 当前业界中所最常使用的负载平衡解决方式主要分为三种:基于DNS的负载平衡,L3/4负载平衡,也 ...

  7. Prime Distance(二次筛素数)

    Description The branch of mathematics called number theory is about properties of numbers. One of th ...

  8. 【OpenCV新手教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) ...

  9. 嵌入式开发之davinci---IPIPE、IPIPEIF and ISIF这三者有什么区别

    (1)缩写概念 (2)各自区别 (3)不同sensor 采集接口 (4)采集后的数据链路link (5)8127 中的iss和ipipe的区别 (1)缩写概念 http://www.ti.com.cn ...

  10. C/C++ scanf 函数中%s 和%c 的简单差别

    首先声明:在键盘中敲入字符后,字符会首先保存在键盘缓冲区中供scanf函数读取(scanf.getchar等函数是读取缓冲区,getch函数是读取的控制台信息,即为直接从键盘读取).另外特别注意键盘上 ...