A - Robberies

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 

Input

The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 

Output

For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints 
0 < T <= 100 
0.0 <= P <= 1.0 
0 < N <= 100 
0 < Mj <= 100 
0.0 <= Pj <= 1.0 
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 

Sample Input

3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 

Sample Output

2
4
6
 
2016.4.22,在做这道题时,发现依然问题多多。
1.概率是个小数,这次第一个思路是乘100然后用其作为消耗,这显然不对,首先double转int就会有误差,其次概率之间的关系不是简单的求和(显然读题不仔细)。题目中说的是,在小于被抓住的概率下拿到最多的钱,dp[0]被抓的概率为0不被抓的概率为1,由此应讨论不被抓的概率。dp[j]中存的是拿到j的价值而不被抓的概率。最后只需从后往前判断概率大小即可。
 
 
 
 题解:用不被抓到的概率来处理,状态转移方程相对简单。把可能抢到的钱数所对应的不被抓住的概率存入dp数组,再for(i=sum;i>=0;i++)如果能抢到的最大钱数所对应的不被抓概率大于(1-p)则输出i,然后跳出循环,该i值为最大钱数
 代码:
#include<stdio.h>
double max(double a,double b)
{
return a>b?a:b;
}
int main()
{
int t,n,M[110],i,j,sum;
double p,P[110],dp[10010]; //dp为背包最大容量
scanf("%d",&t);
while(t--)
{
sum=0;
scanf("%lf%d",&p,&n);
dp[0]=1; //当抢到的钱为零时,不被抓的概率为1
for(i=0; i<n; i++)
{
scanf("%d%lf",&M[i],&P[i]);
sum+=M[i];
}
for(i=1; i<=sum; i++) //需将除dp[0]以外的所有元素初始化为零,因为状态转移方程要比较大小再赋值,见图。之前错在此处。
dp[i]=0.0;
for(i=0; i<n; i++) //此循环为遍历银行
for(j=sum; j>=M[i]; j--) //此处不易理解。假设银行(1,0.02)(2,0.03)(3,0.05) 此循环大概功能:dp[6]=dp[3]*P[3],dp[3]=dp[1]*P[2].
dp[j]=max(dp[j],dp[j-M[i]]*(1-P[i])); //状态转移方程
for(i=sum; i>=0; i--)
if(dp[i]>=(1.0-p))
{
printf("%d\n",i);
break;
}
}
return 0;
}

  

HDU_2955_Robberies_01背包的更多相关文章

  1. 【USACO 3.1】Stamps (完全背包)

    题意:给你n种价值不同的邮票,最大的不超过10000元,一次最多贴k张,求1到多少都能被表示出来?n≤50,k≤200. 题解:dp[i]表示i元最少可以用几张邮票表示,那么对于价值a的邮票,可以推出 ...

  2. HDU 3535 AreYouBusy (混合背包)

    题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...

  3. HDU2159 二维完全背包

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  4. CF2.D 并查集+背包

    D. Arpa's weak amphitheater and Mehrdad's valuable Hoses time limit per test 1 second memory limit p ...

  5. UVALive 4870 Roller Coaster --01背包

    题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F ,     D -= K 问在D小于等于一定限度的时 ...

  6. 洛谷P1782 旅行商的背包[多重背包]

    题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能 ...

  7. POJ1717 Dominoes[背包DP]

    Dominoes Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6731   Accepted: 2234 Descript ...

  8. HDU3466 Proud Merchants[背包DP 条件限制]

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  9. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

随机推荐

  1. JS 获取form表单的所有数据

    在HTML中用js获取通过GET.POST方法(就是在网址后加?a=b&c=d之类)传过来的表单值. 针对大家常用的获取表单方式,很多时候都是在重复的写一些代码,今天给大家贴出来的代码可以作为 ...

  2. Wordpress 建站(一)

    去年在美国的justhost上买了两个域名(shanyexuanyu.com  和 chenjinyu.net.shanyexuanyu.com是给一位马来西亚的佛教徒朋友做的站点. 她镜头下佛教的文 ...

  3. Guake Terminal ── linux下完美帅气的终端

    虽说如今非常多Linux发行版.比方Ubuntu,已经基本上能够採用GUI来完毕绝大部分一般性的任务. 可是,终端程序对于linux用户来说仍是不可缺少的. Gnome自带的gnome-termina ...

  4. ZOJ 3872 计算对答案的贡献

                                                   D - Beauty of Array Description Edward has an array A ...

  5. a high-level neural networks AP

    Keras Documentation https://keras.io/ You have just found Keras. Keras is a high-level neural networ ...

  6. git ignore的一些技巧

    当想要ignore的部分已经纳入版本控制的时候,可以使用 git rm --cache -rf cache 来强制ignore

  7. edittext 底线颜色

    <style name="Custom.Widget.EditView" parent="Widget.AppCompat.EditText" > ...

  8. 2014年国内最热门的.NET开源项目TOP25

    编者按:在2014年初时,微软宣布成立.NET基金会,全面支持开源项目.如今将过一年的时间,目前国内的开源项目到底如何了?下面我们就来细数一下国内25款比较优秀的.NET开源项目. 作者:acdoma ...

  9. BZOJ_2424_[HAOI2010]订货_最小费用最大流

    BZOJ_2424_[HAOI2010]订货_最小费用最大流 Description 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付 ...

  10. 解决 django 中 mysql gone away 的问题

    最近在项目中,我使用 Django Command 模块写了一个脚本,处理从 MQ 发来的消息,并入库.在测试过程中,程序运行良好,但是在程序上线并运行一段时间后,出现了以下错误: Operation ...