A - Robberies

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 

Input

The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 

Output

For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints 
0 < T <= 100 
0.0 <= P <= 1.0 
0 < N <= 100 
0 < Mj <= 100 
0.0 <= Pj <= 1.0 
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 

Sample Input

3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 

Sample Output

2
4
6
 
2016.4.22,在做这道题时,发现依然问题多多。
1.概率是个小数,这次第一个思路是乘100然后用其作为消耗,这显然不对,首先double转int就会有误差,其次概率之间的关系不是简单的求和(显然读题不仔细)。题目中说的是,在小于被抓住的概率下拿到最多的钱,dp[0]被抓的概率为0不被抓的概率为1,由此应讨论不被抓的概率。dp[j]中存的是拿到j的价值而不被抓的概率。最后只需从后往前判断概率大小即可。
 
 
 
 题解:用不被抓到的概率来处理,状态转移方程相对简单。把可能抢到的钱数所对应的不被抓住的概率存入dp数组,再for(i=sum;i>=0;i++)如果能抢到的最大钱数所对应的不被抓概率大于(1-p)则输出i,然后跳出循环,该i值为最大钱数
 代码:
#include<stdio.h>
double max(double a,double b)
{
return a>b?a:b;
}
int main()
{
int t,n,M[110],i,j,sum;
double p,P[110],dp[10010]; //dp为背包最大容量
scanf("%d",&t);
while(t--)
{
sum=0;
scanf("%lf%d",&p,&n);
dp[0]=1; //当抢到的钱为零时,不被抓的概率为1
for(i=0; i<n; i++)
{
scanf("%d%lf",&M[i],&P[i]);
sum+=M[i];
}
for(i=1; i<=sum; i++) //需将除dp[0]以外的所有元素初始化为零,因为状态转移方程要比较大小再赋值,见图。之前错在此处。
dp[i]=0.0;
for(i=0; i<n; i++) //此循环为遍历银行
for(j=sum; j>=M[i]; j--) //此处不易理解。假设银行(1,0.02)(2,0.03)(3,0.05) 此循环大概功能:dp[6]=dp[3]*P[3],dp[3]=dp[1]*P[2].
dp[j]=max(dp[j],dp[j-M[i]]*(1-P[i])); //状态转移方程
for(i=sum; i>=0; i--)
if(dp[i]>=(1.0-p))
{
printf("%d\n",i);
break;
}
}
return 0;
}

  

HDU_2955_Robberies_01背包的更多相关文章

  1. 【USACO 3.1】Stamps (完全背包)

    题意:给你n种价值不同的邮票,最大的不超过10000元,一次最多贴k张,求1到多少都能被表示出来?n≤50,k≤200. 题解:dp[i]表示i元最少可以用几张邮票表示,那么对于价值a的邮票,可以推出 ...

  2. HDU 3535 AreYouBusy (混合背包)

    题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...

  3. HDU2159 二维完全背包

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  4. CF2.D 并查集+背包

    D. Arpa's weak amphitheater and Mehrdad's valuable Hoses time limit per test 1 second memory limit p ...

  5. UVALive 4870 Roller Coaster --01背包

    题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F ,     D -= K 问在D小于等于一定限度的时 ...

  6. 洛谷P1782 旅行商的背包[多重背包]

    题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能 ...

  7. POJ1717 Dominoes[背包DP]

    Dominoes Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6731   Accepted: 2234 Descript ...

  8. HDU3466 Proud Merchants[背包DP 条件限制]

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  9. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

随机推荐

  1. 每天记录一点:NetCore获得配置文件 appsettings.json vue-router页面传值及接收值 详解webpack + vue + node 打造单页面(入门篇) 30分钟手把手教你学webpack实战 vue.js+webpack模块管理及组件开发

    每天记录一点:NetCore获得配置文件 appsettings.json   用NetCore做项目如果用EF  ORM在网上有很多的配置连接字符串,读取以及使用方法 由于很多朋友用的其他ORM如S ...

  2. hdu 5361 2015多校联合训练赛#6 最短路

    In Touch Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total ...

  3. [Android6.0][RK3399] 双屏异显代码实现流程分析(二)【转】

    本文转载自:http://blog.csdn.net/dearsq/article/details/55050125 Patch Code dtsi rk3399-androiddtsi rk3399 ...

  4. hdu 6035(树形dp)

    题意:给你棵树,树上每个节点都有颜色,每条路径上有m种颜色  问你所有路径上出现的颜色的和 思路:答案求的是每种颜色对路径的贡献  我们可以反过来每种颜色不经过的路径的条数 假设根节点的颜色为x  我 ...

  5. 10.04 FZSZ模拟Day1 总结

    今天轮到FZSZ出题了,这可是连续两年捧杯NOI的学校了…… 可想而知今天题难度有多大……不过似乎还要庆幸出题的是一位叫Anzhe Wang 的大神而不是fjzzq? T1.permutation 期 ...

  6. 别再问什么是Java内存模型了,看这里!

    网上有很多关于Java内存模型的文章,在<深入理解Java虚拟机>和<Java并发编程的艺术>等书中也都有关于这个知识点的介绍.但是,很多人读完之后还是搞不清楚,甚至有的人说自 ...

  7. 安装完Anaconda python 3.7,想使用python3.6方法

    cmd使用命令: conda create -n py36 python=3.6 anaconda 安装好后,会有提示: To activate this environment, use:# > ...

  8. Spark 2.2.0 分布式集群环境搭建

    集群机器: 1台 装了 ubuntu 14.04的 台式机 1台 装了ubuntu 16.04 的 笔记本     (机器更多时同样适用) 1.需要安装好Hadoop分布式环境 参照:Hadoop分类 ...

  9. vue-easytable

    github地址:https://github.com/huangshuwei/vue-easytable

  10. 【转载】Cookie/Session机制详解

    [本文转自]http://blog.csdn.net/fangaoxin/article/details/6952954/ 会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话. ...