题目:https://www.luogu.org/problemnew/show/P3195

第一次用斜率优化...其实还是有点云里雾里的;

网上的题解都很详细,我的理解就是通过把式子变形,假定一个最优解,得到的是一条直线,斜率已知;

然后找到最接近这个最优斜率的点作为答案;

同时发现斜率单调递增,所以可以用单调队列;

代码是惊人地短呢;

还有一个问题,就是下面这篇代码中注释掉的那句会WA,可是我觉得它不过是把下面一句展开了而已啊?

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef double db;
int const maxn=;
int n,l,q[maxn];
db sum[maxn],f[maxn];
db a(int i){return sum[i]+i;}
db b(int i){return sum[i]+i+l+;}
db y(int i){return f[i]+b(i)*b(i);}
db x(int i){return b(i);}
db slope(int i,int j){return (y(i)-y(j))/(x(i)-x(j));}
int main()
{
scanf("%d%d",&n,&l);
for(int i=;i<=n;i++)
{
scanf("%lf",&sum[i]);
sum[i]+=sum[i-];
}
int head=,tail=;
for(int i=;i<=n;i++)
{
while(head<tail&&slope(q[head],q[head+])<*a(i))head++;
// f[i]=y(q[head])-2*a(i)*b(q[head])+a(i)*a(i);
f[i]=f[q[head]]+(a(i)-b(q[head]))*(a(i)-b(q[head]));
while(head<tail&&slope(q[tail-],q[tail])>slope(q[tail-],i))tail--;
q[++tail]=i;
}
printf("%lld",(long long)f[n]);
return ;
}

洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP的更多相关文章

  1. 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化

    Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...

  2. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  4. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  5. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. [洛谷P3195][HNOI2008]玩具装箱TOY

    题目大意:有n个物体,大小为$c_i$.把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$.费用最小. 题解 ...

  7. 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  8. 洛谷 P3195 [HNOI2008]玩具装箱TOY

    题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...

  9. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

随机推荐

  1. 【spring data jpa】报错如下:Caused by: javax.persistence.EntityNotFoundException: Unable to find com.rollong.chinatower.server.persistence.entity.staff.Department with id 0

    报错如下: org.springframework.orm.jpa.JpaObjectRetrievalFailureException: Unable to find com.rollong.chi ...

  2. 【面试 JVM】【第六篇】JVM调优

    六部分内容: 一.内存模型 1.程序计数器,方法区,堆,栈,本地方法栈的作用,保存那些数据 可以画个大图出来,很清晰 jvm内存模型主要指运行时的数据区,包括5个部分. 栈也叫方法栈,是线程私有的,线 ...

  3. 使用datatables实现列宽设置、水平滚动条、显示某列部分内容

    示例 1.//使用 columnDefs 给列设置宽度 $('#example').DataTable( { "columnDefs": [ //给第一列指定宽度为表格整个宽度的2 ...

  4. VisualSVN Server 导入已存在的库

    http://blog.csdn.net/lidatgb/article/details/7984220         早些时候建立过一个SVN Server的库,后来觉得库的名字太长了,随意换了一 ...

  5. 【Nutch基础教程之七】Nutch的2种执行模式:local及deploy

    在对nutch源码执行ant runtime后,会创建一个runtime的文件夹.在runtime文件夹下有deploy和local 2个文件夹. [jediael@jediael runtime]$ ...

  6. 小程序 - Template

    关于模板,参见:https://mp.weixin.qq.com/debug/wxadoc/dev/framework/view/wxml/template.html 引入模块 <import ...

  7. IOS UIPickView+sqlite 选择中国全部城市案例

    1.案例简单介绍 通过读取文件.将中国全部城市写入sqlite数据库中,现通过UIPickView实现中国全部城市的选择,效果图例如以下所看到的 2.城市对象模型 中国全部城市数据请看http://b ...

  8. POJ 3518 Prime Gap(素数)

    POJ 3518 Prime Gap(素数) id=3518">http://poj.org/problem? id=3518 题意: 给你一个数.假设该数是素数就输出0. 否则输出比 ...

  9. android的armeabi和armeabi-v7a

    在ANE中如果SDK调用了so库,则需要把so库放到ANE下Android-ARM/lib/armeabi (调试模式)或者 armeabi-v7a(发行模式)下. 可以贴个ADT代码说明问题: // ...

  10. 《Getting Started with WebRTC》第二章 WebRTC技术介绍

    <Getting Started with WebRTC>第二章 WebRTC技术介绍 本章作WebRTC的技术介绍,主要讲下面的概念:   .  怎样建立P2P的通信   .  有效的信 ...