参考:https://spark.apache.org/docs/latest/sql-programming-guide.html#overview

  http://www.csdn.net/article/2015-04-03/2824407

Spark SQL is a Spark module for structured data processing. It provides a programming abstraction called DataFrames and can also act as distributed SQL query engine.

1)在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观RDD,由于无从得知所存数据元素的具体内部结构,Spark Core只能在stage层面进行简单、通用的流水线优化。

2)A DataFrame can be operated on as normal RDDs and can also be registered as a temporary table. Registering a DataFrame as a table allows you to run SQL queries over its data.

3)The sql function on a SQLContext enables applications to run SQL queries programmatically and returns the result as a DataFrame.

val df = sqlContext.sql("SELECT * FROM table")   //sql接口

创建DataFrames:

With a SQLContext, applications can create DataFrames from an existing RDD, from a Hive table, or from data sources.

val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc) // this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._
  • Two different methods for converting existing RDDs into DataFrames.

    • The first method uses reflection to infer the schema of an RDD that contains specific types of objects.

The case class defines the schema of the table=>The names of the arguments to the case class are read using reflection and become the names of the columns=>This RDD can be implicitly converted to a DataFrame and then be registered as a table=>Tables can be used in subsequent SQL statements.

// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._ // Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface.
case class Person(name: String, age: Int) // Create an RDD of Person objects and register it as a table.
val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people") // SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") // The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by ordinal.
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
    • Aprogrammatic interface that allows you to construct a schema and then apply it to an existing RDD. While this method is more verbose, it allows you to construct DataFrames when the columns and their types are not known until runtime.
  • From data sources:
val df = sqlContext.load("people.json", "json")
df.select("name", "age").save("namesAndAges.parquet", "parquet")

or

val df = sqlContext.jsonFile("examples/src/main/resources/people.json")   

Spark 学习笔记:(三)Spark SQL的更多相关文章

  1. spark学习笔记总结-spark入门资料精化

    Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...

  2. Spark学习笔记-三种属性配置详细说明【转】

    相关资料:Spark属性配置  http://www.cnblogs.com/chengxin1982/p/4023111.html 本文出处:转载自过往记忆(http://www.iteblog.c ...

  3. Spark学习笔记-使用Spark History Server

    在运行Spark应用程序的时候,driver会提供一个webUI给出应用程序的运行信息,但是该webUI随着应用程序的完成而关闭端口,也就是 说,Spark应用程序运行完后,将无法查看应用程序的历史记 ...

  4. Spark 学习笔记之 Spark history Server 搭建

    在hdfs上建立文件夹/directory hadoop fs -mkdir /directory 进入conf目录  spark-env.sh 增加以下配置 export SPARK_HISTORY ...

  5. Spark学习笔记之-Spark远程调试

    Spark远程调试                          本例子介绍简单介绍spark一种远程调试方法,使用的IDE是IntelliJ IDEA.   1.了解jvm一些参数属性   -X ...

  6. Spark学习笔记之SparkRDD

    Spark学习笔记之SparkRDD 一.   基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ①   内存集合和外部存储系统 ②   ...

  7. Spark学习笔记0——简单了解和技术架构

    目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受 ...

  8. Oracle学习笔记三 SQL命令

    SQL简介 SQL 支持下列类别的命令: 1.数据定义语言(DDL) 2.数据操纵语言(DML) 3.事务控制语言(TCL) 4.数据控制语言(DCL)  

  9. Spark学习笔记2(spark所需环境配置

    Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后 ...

  10. Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)

    Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...

随机推荐

  1. c++ 一个cpp文件如何调用另一个cpp文件已经定义的类?我不想重复定义

    文件test1.cpp有类class A;文件test2.cpp有类class B.如在test2.cpp中想用A:#include "test1.cpp" 当然一般的做法是将类的 ...

  2. Python unittest 学习

    import unittest class UTest(unittest.TestCase): def test_upper(self): self.assertEqual('foo'.upper() ...

  3. [UOJ#128][BZOJ4196][Noi2015]软件包管理器

    [UOJ#128][BZOJ4196][Noi2015]软件包管理器 试题描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管 ...

  4. BZOJ 2693 jzptab ——莫比乌斯反演

    同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...

  5. P1140 相似基因 (动态规划)

    题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了4种核苷酸,简记作A,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. 在一个人类基因工作组的任务中,生物学家研究 ...

  6. bzoj3211 花神游历各国 线段树,势能分析

    [bzoj3211]花神游历各国 2014年3月17日2,7230 Description   Input   Output 每次x=1时,每行一个整数,表示这次旅行的开心度 Sample Input ...

  7. docker管理工具推荐(linux和windows)

    1.windows. 下载dokcer toolbox即可 2.linux 推荐rancher.安装链接参考:http://www.kaimingwan.com/post/rong-qi-yu-ron ...

  8. poj 1031 多边形对点(向周围发射光线)的覆盖

    Fence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3018   Accepted: 1010 Description ...

  9. EMD距离

    一.场景介绍   最近在研究一个场景:图片质量评分,给一张图片一个预测的分数.   里面提到了用 EMD(Earth Mover’s Distance)算法来评估两张图片之间的分布距离.下面主要讲解下 ...

  10. golang测试框架--smartystreets/goconvey

    视频教程和配套博客:goconvey - 课时 1:优雅的单元测试 Go 语言虽然自带单元测试功能,在 GoConvey 诞生之前也出现了许多第三方辅助库.但没有一个辅助库能够像 GoConvey 这 ...