#include <stdio.h>
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <cvaux.h>//必须引此头文件

void main(  )
{  
 //参数初始化定义
    IplImage* pFrame = NULL;  
    IplImage* pFrImg = NULL;   
    IplImage* pBkImg = NULL;     
    CvCapture* pCapture = NULL;
    IplImage* origin_rgb = NULL ;//定义rgb空间的存储
    IplImage* origin_ycc = NULL ;//定义转换成YCrCb空间的存储
 IplImage* lumi = NULL ;//定义亮度分量的存储空间
  
 //定义窗口
 cvNamedWindow("lumi",1);//定义显示窗口的名字,显示原始的视频
    cvMoveWindow("lumi",30,0);//定义显示窗口的位置
    cvNamedWindow("background",1);//显示经过转换格式的视频
 cvMoveWindow("background",360,0);
    cvNamedWindow("foreground",1);//显示经过亮度提取的视频
    cvMoveWindow("foreground",690,0); 
 
 //读取一帧视频文件作为初始化
    pCapture = cvCaptureFromFile("video.long.xvid.avi") ;
 pFrame = cvQueryFrame(pCapture);
 int i ;
 for (i=0;i<2;i++)
 {
          pFrame = cvQueryFrame(pCapture);
 }
 //RGB转换成亮度
    origin_rgb = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 3 );
    origin_ycc = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 3 );
    lumi = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 1 );
    pFrImg = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 1 );
    pBkImg = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 1 );
 
 //origin_rgb = cvCloneImage(pFrame) ;//或者 cvCopy(pFrame,origin_rgb,NULL) ;
 cvCopy(pFrame,origin_rgb,NULL) ;//复制视频
 cvCvtColor(origin_rgb,origin_ycc,CV_BGR2YCrCb) ; //实现视频格式转换
 cvSplit(origin_ycc,lumi,NULL,NULL,NULL);    //获取亮度分量
 
    //为高斯模型设置初时参数
    CvGaussBGStatModelParams* params = new CvGaussBGStatModelParams;      
    params->win_size = 50; 
    params->n_gauss = 3;
    params->bg_threshold = 0.7;
    params->std_threshold = 3.5;
    params->minArea = 15;
    params->weight_init = 0.333;
    params->variance_init = 30;
 
 CvBGStatModel* bgModel = cvCreateGaussianBGModel(lumi,params);
 
 int key=-1;
    while(key != 'q')
    {
        //获取下一帧视频
        pFrame = cvQueryFrame(pCapture);
  cvCopy(pFrame,origin_rgb,NULL) ;//复制视频
  cvCvtColor(origin_rgb,origin_ycc,CV_BGR2YCrCb) ; //实现视频格式转换
  cvSplit(origin_ycc,lumi,NULL,NULL,NULL);    //获取亮度分量
        if( !pFrame )
            break;
       
        //更新高斯模型
        cvUpdateBGStatModel(lumi,bgModel);
        pFrImg = bgModel->foreground ;//前景图象
  pBkImg = bgModel->background ; //背景图象
       
  //将图象倒转过来
        pBkImg->origin = 1 ;        
  pFrImg->origin = 1 ;
  lumi->origin = 1 ;

//显示结果
        cvShowImage("lumi",lumi);
      cvShowImage("background",pBkImg);
      cvShowImage("foreground",pFrImg);
        key = cvWaitKey(10);
    }
 //   cvWaitKey(0) ;//窗口的回调函数,必须要的,不然窗口的显示会不正常
    //释放窗口内存资源
 cvDestroyWindow("lumi");
    cvDestroyWindow("background");
 cvDestroyWindow("foreground");

//释放图象占用的内存资源
 cvReleaseImage(&lumi); 
 cvReleaseImage(&pBkImg);   
 cvReleaseImage(&pFrImg); 
 cvReleaseCapture(&pCapture); 
 cvReleaseBGStatModel( &bgModel );
}

创建高斯背景模型

cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters )
{
    //CvGaussBGModel在cvaux.h中有定义,是一个结构体
    CvGaussBGModel* bg_model = 0;
   
    CV_FUNCNAME( "cvCreateGaussianBGModel" );//在cxerror.h定义,定义cvFuncName宏变量
                                             //cvFuncName定义为和函数名称相同cvCreateGaussianBGModel
   
    __BEGIN__;//开始处理(是必须接在这个CV_FUNCNAME之后的)
   
    double var_init;
    CvGaussBGStatModelParams params;//定义初始化变量,在cvaux.h中定义的结构体CvGaussBGStatModelParams
    int i, j, k, n, m, p;
   
    //init parameters
    if( parameters == NULL )
    {
        params.win_size = CV_BGFG_MOG_WINDOW_SIZE;//CV_BGFG_MOG_WINDOW_SIZE=200,和学习率的关系1/200=0.005
        params.bg_threshold = CV_BGFG_MOG_BACKGROUND_THRESHOLD;//CV_BGFG_MOG_BACKGROUND_THRESHOLD=0.7(判断是否为背景点的阈值)
        params.std_threshold = CV_BGFG_MOG_STD_THRESHOLD;//CV_BGFG_MOG_STD_THRESHOLD=2.5(标准阈值)
        params.weight_init = CV_BGFG_MOG_WEIGHT_INIT;//CV_BGFG_MOG_WEIGHT_INIT=0.05(权值)
        params.variance_init = CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT;//CV_BGFG_MOG_SIGMA_INIT=30(方差)
        params.minArea = CV_BGFG_MOG_MINAREA;//CV_BGFG_MOG_MINAREA=15.f(这个不知道?)
        params.n_gauss = CV_BGFG_MOG_NGAUSSIANS;//CV_BGFG_MOG_NGAUSSIANS=5(高斯模型数量)
    }
    else
    {
        params = *parameters;
    }
    //CV_IS_IMAGE在cxtypes.h中定义,在这里估计是判断是否有读入图象帧
    //CV_StsBadArg=-5,代表函数有问题,或者输入的参数有问题
    if( !CV_IS_IMAGE(first_frame) )
        CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );
   
    //CV_CALL在cxerror.h中有定义,这里用来确认一下调用是否正确
    CV_CALL( bg_model = (CvGaussBGModel*)cvAlloc( sizeof(*bg_model) ));
    memset( bg_model, 0, sizeof(*bg_model) );
    bg_model->type = CV_BG_MODEL_MOG;//这个在cvGaussBGModel中定义的CV_BG_STAT_MODEL_FIELDS()函数中都有,存在type,release,update,foreground,background等
    bg_model->release = (CvReleaseBGStatModel)icvReleaseGaussianBGModel;
    bg_model->update = (CvUpdateBGStatModel)icvUpdateGaussianBGModel;
   
    bg_model->params = params;
   
    //分配存储空间
    CV_CALL( bg_model->g_point = (CvGaussBGPoint*)cvAlloc(sizeof(CvGaussBGPoint)*
        ((first_frame->width*first_frame->height) + 256)));//这个是参与的点数,以及存放这些点需要的空间    
    CV_CALL( bg_model->background = cvCreateImage(cvSize(first_frame->width,
        first_frame->height), IPL_DEPTH_8U, first_frame->nChannels));//给背景分配存储空间
    CV_CALL( bg_model->foreground = cvCreateImage(cvSize(first_frame->width,
        first_frame->height), IPL_DEPTH_8U, 1));//给前景分配存储空间
   
    CV_CALL( bg_model->storage = cvCreateMemStorage());//分配存储空间
   
    //初始化

var_init = 2 * params.std_threshold * params.std_threshold;
    CV_CALL( bg_model->g_point[0].g_values =
        (CvGaussBGValues*)cvAlloc( sizeof(CvGaussBGValues)*params.n_gauss*
        (first_frame->width*first_frame->height + 128)));//这个是给g_value分配足够的存储空间
   
   //程序说明
   //g_values[0],g_values[1],g_values[2]存放3个高斯混合模型的变量
   //g_values[].weight(权重) g_values[].mean[](均值) g_values[].variance[](方差)
   //具体安排是每一个象素点都有3个模型,
   //然后每一个象素点的三个模型
   //模型0的权重为1,方差为2倍的标准差的平方,均值为当前象素点的值
   //模型1的权重为0,方差为2倍的标准差的平方,均值为0
   //模型2的权重为0,方差为2倍的标准差的平方,均值为0
   //g_point指的是参加高斯背景建模的象素点的个数
    for( i = 0, p = 0, n = 0; i < first_frame->height; i++ )
    {
        for( j = 0; j < first_frame->width; j++, n++ )
        {
            bg_model->g_point[n].g_values =
                bg_model->g_point[0].g_values + n*params.n_gauss;
            bg_model->g_point[n].g_values[0].weight = 1;    //the first value seen has weight one
            bg_model->g_point[n].g_values[0].match_sum = 1;
            for( m = 0; m < first_frame->nChannels; m++)
            {
                bg_model->g_point[n].g_values[0].variance[m] = var_init;
                bg_model->g_point[n].g_values[0].mean[m] = (unsigned char)first_frame->imageData[p + m];
            }
            for( k = 1; k < params.n_gauss; k++)
            {
                bg_model->g_point[n].g_values[k].weight = 0;
                bg_model->g_point[n].g_values[k].match_sum = 0;
                for( m = 0; m < first_frame->nChannels; m++){
                    bg_model->g_point[n].g_values[k].variance[m] = var_init;
                    bg_model->g_point[n].g_values[k].mean[m] = 0;
                }
            }
            p += first_frame->nChannels;
        }
    }
   
    bg_model->countFrames = 0;
   
    __END__;
   
    if( cvGetErrStatus() < 0 )
    {
        CvBGStatModel* base_ptr = (CvBGStatModel*)bg_model;
       
        if( bg_model && bg_model->release )
            bg_model->release( &base_ptr );
        else
            cvFree( &bg_model );
        bg_model = 0;
    }
   
    return (CvBGStatModel*)bg_model;
}

这整个函数就是对结构体cvGaussBGModel里面的参数:CV_BG_STAT_MODEL_FIELDS(),params,g_point,countFrames赋值,实际上也是可以把其复制过来,自己修改初时的参数。

高斯背景模型

运动检测的一般方法

目前,运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求 的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用高 斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来 说,前景就是运动物体,从而达到运动物体检测的目的。

单分布高斯背景模型

单分布高斯背景模型认为,对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图像B,(x,y)点的亮度满足:

IB(x,y) ~ N(u,d)

这样我们的背景模型的每个象素属性包括两个参数:平均值u 和 方差d。

对于一幅给定的图像G,如果 Exp(-(IG(x,y)-u(x,y))^2/(2*d^2)) > T,认为(x,y)是背景点,反之是前景点。

同时,随着时间的变化,背景图像也会发生缓慢的变化,这时我们要不断更新每个象素点的参数

u(t+1,x,y) = a*u(t,x,y) + (1-a)*I(x,y)

这里,a称为更新参数,表示背景变化的速度,一般情况下,我们不更新d(实验中发现更不更新d,效果变化不大)。

http://blog.csdn.net/chenhongc/article/details/5755922 c 实现
http://caimingdong2008.blog.163.com/blog/static/50452429200811711059396/
http://blog.csdn.net/chenhongc/article/details/5755878
http://blog.csdn.net/jinshengtao/article/details/26278725 原理
http://www.360doc.com/content/10/0922/23/10610_55649753.shtml 跟踪小结

目标跟踪之高斯混合模型---cv实现的更多相关文章

  1. GMM+Kalman Filter+Blob 目标跟踪

    转 http://www.cnblogs.com/YangQiaoblog/p/5462453.html ==========图片版================================== ...

  2. 高斯混合模型(GMM) - 混合高斯回归(GMR)

    http://www.zhihuishi.com/source/2073.html 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲 ...

  3. 高斯混合模型(理论+opencv实现)

    查资料的时候看了一个不文明的事情,转载别人的东西而不标注出处,结果原创无人知晓,转载很多人评论~~标注了转载而不说出处这样的人有点可耻! 写在前面: Gaussian Mixture Model (G ...

  4. 目标跟踪之ECO:Efficient Convolution Operators for Tracking

    一. 相关滤波算法总结 作者首先分析了 影响相关滤波算法效率 和 导致过拟合 的几个原因: 1)Model Size (模型大小) 包括两个方面: - 模型层数,对应多分辨率 Sample,比如多层 ...

  5. 目标跟踪之粒子滤波---Opencv实现粒子滤波算法

    目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方 ...

  6. 高斯混合模型(GMM)

    复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...

  7. KCF目标跟踪方法分析与总结

    KCF目标跟踪方法分析与总结 correlation filter Kernelized correlation filter tracking 读"J. F. Henriques, R. ...

  8. GMM高斯混合模型学习笔记(EM算法求解)

    提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一 ...

  9. 高斯混合模型的EM算法

    高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mat ...

随机推荐

  1. 南邮CTF--SQL注入题

    南邮CTF--SQL注入题 题目:GBK SQL injection 解析: 1.判断注入点:加入单引号发现被反斜杠转移掉了,换一个,看清题目,GBK,接下来利用宽字节进行注入 2.使用'%df' ' ...

  2. python 闭包&装饰器(一)

    一.闭包 1.举例 def outer(): x = 10 def inner(): # 内部函数 print(x) # 外部函数的一个变量 return inner # 调用inner()函数的方法 ...

  3. python_random模块

    random模块 import random print(random.random()) # 大于0且小于1之间的小数 print(random.randint(1, 6)) # 大于等于1且小于等 ...

  4. ssm+activiti+maven

    1spring整合activiti中添加activiti依赖 <!-- 添加Activiti支持 --> <dependency> <groupId>org.act ...

  5. (转)]PYTHON Tkinter GUI

    import Tkinterroot=Tkinter.Tk()label=Tkinter.Label(root,text='hello ,python')label.pack()      #将LAB ...

  6. xtu DP Training C.炮兵阵地

    炮兵阵地 Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 11856 ...

  7. python008 Python3 字符串

    var1 = 'Hello World!' var2 = "QQ603374730" Python 访问字符串中的值Python 不支持单字符类型,单字符也在Python也是作为一 ...

  8. HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

    Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...

  9. POJ2014 Flow Layout

      Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3161   Accepted: 2199 Description A f ...

  10. OpenJudge 6042 雇佣兵

    37:雇佣兵 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 雇佣兵的体力最大值为M,初始体力值为0.战斗力为N.拥有X个能量元素. 当雇佣兵的体力值恰好为M时,才可以参加一个 ...