目标跟踪之高斯混合模型---cv实现
#include <stdio.h>
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <cvaux.h>//必须引此头文件
void main( )
{
//参数初始化定义
IplImage* pFrame = NULL;
IplImage* pFrImg = NULL;
IplImage* pBkImg = NULL;
CvCapture* pCapture = NULL;
IplImage* origin_rgb = NULL ;//定义rgb空间的存储
IplImage* origin_ycc = NULL ;//定义转换成YCrCb空间的存储
IplImage* lumi = NULL ;//定义亮度分量的存储空间
//定义窗口
cvNamedWindow("lumi",1);//定义显示窗口的名字,显示原始的视频
cvMoveWindow("lumi",30,0);//定义显示窗口的位置
cvNamedWindow("background",1);//显示经过转换格式的视频
cvMoveWindow("background",360,0);
cvNamedWindow("foreground",1);//显示经过亮度提取的视频
cvMoveWindow("foreground",690,0);
//读取一帧视频文件作为初始化
pCapture = cvCaptureFromFile("video.long.xvid.avi") ;
pFrame = cvQueryFrame(pCapture);
int i ;
for (i=0;i<2;i++)
{
pFrame = cvQueryFrame(pCapture);
}
//RGB转换成亮度
origin_rgb = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 3 );
origin_ycc = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 3 );
lumi = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 1 );
pFrImg = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 1 );
pBkImg = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U, 1 );
//origin_rgb = cvCloneImage(pFrame) ;//或者 cvCopy(pFrame,origin_rgb,NULL) ;
cvCopy(pFrame,origin_rgb,NULL) ;//复制视频
cvCvtColor(origin_rgb,origin_ycc,CV_BGR2YCrCb) ; //实现视频格式转换
cvSplit(origin_ycc,lumi,NULL,NULL,NULL); //获取亮度分量
//为高斯模型设置初时参数
CvGaussBGStatModelParams* params = new CvGaussBGStatModelParams;
params->win_size = 50;
params->n_gauss = 3;
params->bg_threshold = 0.7;
params->std_threshold = 3.5;
params->minArea = 15;
params->weight_init = 0.333;
params->variance_init = 30;
CvBGStatModel* bgModel = cvCreateGaussianBGModel(lumi,params);
int key=-1;
while(key != 'q')
{
//获取下一帧视频
pFrame = cvQueryFrame(pCapture);
cvCopy(pFrame,origin_rgb,NULL) ;//复制视频
cvCvtColor(origin_rgb,origin_ycc,CV_BGR2YCrCb) ; //实现视频格式转换
cvSplit(origin_ycc,lumi,NULL,NULL,NULL); //获取亮度分量
if( !pFrame )
break;
//更新高斯模型
cvUpdateBGStatModel(lumi,bgModel);
pFrImg = bgModel->foreground ;//前景图象
pBkImg = bgModel->background ; //背景图象
//将图象倒转过来
pBkImg->origin = 1 ;
pFrImg->origin = 1 ;
lumi->origin = 1 ;
//显示结果
cvShowImage("lumi",lumi);
cvShowImage("background",pBkImg);
cvShowImage("foreground",pFrImg);
key = cvWaitKey(10);
}
// cvWaitKey(0) ;//窗口的回调函数,必须要的,不然窗口的显示会不正常
//释放窗口内存资源
cvDestroyWindow("lumi");
cvDestroyWindow("background");
cvDestroyWindow("foreground");
//释放图象占用的内存资源
cvReleaseImage(&lumi);
cvReleaseImage(&pBkImg);
cvReleaseImage(&pFrImg);
cvReleaseCapture(&pCapture);
cvReleaseBGStatModel( &bgModel );
}
创建高斯背景模型
cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters )
{
//CvGaussBGModel在cvaux.h中有定义,是一个结构体
CvGaussBGModel* bg_model = 0;
CV_FUNCNAME( "cvCreateGaussianBGModel" );//在cxerror.h定义,定义cvFuncName宏变量
//cvFuncName定义为和函数名称相同cvCreateGaussianBGModel
__BEGIN__;//开始处理(是必须接在这个CV_FUNCNAME之后的)
double var_init;
CvGaussBGStatModelParams params;//定义初始化变量,在cvaux.h中定义的结构体CvGaussBGStatModelParams
int i, j, k, n, m, p;
//init parameters
if( parameters == NULL )
{
params.win_size = CV_BGFG_MOG_WINDOW_SIZE;//CV_BGFG_MOG_WINDOW_SIZE=200,和学习率的关系1/200=0.005
params.bg_threshold = CV_BGFG_MOG_BACKGROUND_THRESHOLD;//CV_BGFG_MOG_BACKGROUND_THRESHOLD=0.7(判断是否为背景点的阈值)
params.std_threshold = CV_BGFG_MOG_STD_THRESHOLD;//CV_BGFG_MOG_STD_THRESHOLD=2.5(标准阈值)
params.weight_init = CV_BGFG_MOG_WEIGHT_INIT;//CV_BGFG_MOG_WEIGHT_INIT=0.05(权值)
params.variance_init = CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT;//CV_BGFG_MOG_SIGMA_INIT=30(方差)
params.minArea = CV_BGFG_MOG_MINAREA;//CV_BGFG_MOG_MINAREA=15.f(这个不知道?)
params.n_gauss = CV_BGFG_MOG_NGAUSSIANS;//CV_BGFG_MOG_NGAUSSIANS=5(高斯模型数量)
}
else
{
params = *parameters;
}
//CV_IS_IMAGE在cxtypes.h中定义,在这里估计是判断是否有读入图象帧
//CV_StsBadArg=-5,代表函数有问题,或者输入的参数有问题
if( !CV_IS_IMAGE(first_frame) )
CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );
//CV_CALL在cxerror.h中有定义,这里用来确认一下调用是否正确
CV_CALL( bg_model = (CvGaussBGModel*)cvAlloc( sizeof(*bg_model) ));
memset( bg_model, 0, sizeof(*bg_model) );
bg_model->type = CV_BG_MODEL_MOG;//这个在cvGaussBGModel中定义的CV_BG_STAT_MODEL_FIELDS()函数中都有,存在type,release,update,foreground,background等
bg_model->release = (CvReleaseBGStatModel)icvReleaseGaussianBGModel;
bg_model->update = (CvUpdateBGStatModel)icvUpdateGaussianBGModel;
bg_model->params = params;
//分配存储空间
CV_CALL( bg_model->g_point = (CvGaussBGPoint*)cvAlloc(sizeof(CvGaussBGPoint)*
((first_frame->width*first_frame->height) + 256)));//这个是参与的点数,以及存放这些点需要的空间
CV_CALL( bg_model->background = cvCreateImage(cvSize(first_frame->width,
first_frame->height), IPL_DEPTH_8U, first_frame->nChannels));//给背景分配存储空间
CV_CALL( bg_model->foreground = cvCreateImage(cvSize(first_frame->width,
first_frame->height), IPL_DEPTH_8U, 1));//给前景分配存储空间
CV_CALL( bg_model->storage = cvCreateMemStorage());//分配存储空间
//初始化
var_init = 2 * params.std_threshold * params.std_threshold;
CV_CALL( bg_model->g_point[0].g_values =
(CvGaussBGValues*)cvAlloc( sizeof(CvGaussBGValues)*params.n_gauss*
(first_frame->width*first_frame->height + 128)));//这个是给g_value分配足够的存储空间
//程序说明
//g_values[0],g_values[1],g_values[2]存放3个高斯混合模型的变量
//g_values[].weight(权重) g_values[].mean[](均值) g_values[].variance[](方差)
//具体安排是每一个象素点都有3个模型,
//然后每一个象素点的三个模型
//模型0的权重为1,方差为2倍的标准差的平方,均值为当前象素点的值
//模型1的权重为0,方差为2倍的标准差的平方,均值为0
//模型2的权重为0,方差为2倍的标准差的平方,均值为0
//g_point指的是参加高斯背景建模的象素点的个数
for( i = 0, p = 0, n = 0; i < first_frame->height; i++ )
{
for( j = 0; j < first_frame->width; j++, n++ )
{
bg_model->g_point[n].g_values =
bg_model->g_point[0].g_values + n*params.n_gauss;
bg_model->g_point[n].g_values[0].weight = 1; //the first value seen has weight one
bg_model->g_point[n].g_values[0].match_sum = 1;
for( m = 0; m < first_frame->nChannels; m++)
{
bg_model->g_point[n].g_values[0].variance[m] = var_init;
bg_model->g_point[n].g_values[0].mean[m] = (unsigned char)first_frame->imageData[p + m];
}
for( k = 1; k < params.n_gauss; k++)
{
bg_model->g_point[n].g_values[k].weight = 0;
bg_model->g_point[n].g_values[k].match_sum = 0;
for( m = 0; m < first_frame->nChannels; m++){
bg_model->g_point[n].g_values[k].variance[m] = var_init;
bg_model->g_point[n].g_values[k].mean[m] = 0;
}
}
p += first_frame->nChannels;
}
}
bg_model->countFrames = 0;
__END__;
if( cvGetErrStatus() < 0 )
{
CvBGStatModel* base_ptr = (CvBGStatModel*)bg_model;
if( bg_model && bg_model->release )
bg_model->release( &base_ptr );
else
cvFree( &bg_model );
bg_model = 0;
}
return (CvBGStatModel*)bg_model;
}
这整个函数就是对结构体cvGaussBGModel里面的参数:CV_BG_STAT_MODEL_FIELDS(),params,g_point,countFrames赋值,实际上也是可以把其复制过来,自己修改初时的参数。
高斯背景模型
运动检测的一般方法
目前,运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求 的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用高 斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来 说,前景就是运动物体,从而达到运动物体检测的目的。
单分布高斯背景模型
单分布高斯背景模型认为,对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图像B,(x,y)点的亮度满足:
IB(x,y) ~ N(u,d)
这样我们的背景模型的每个象素属性包括两个参数:平均值u 和 方差d。
对于一幅给定的图像G,如果 Exp(-(IG(x,y)-u(x,y))^2/(2*d^2)) > T,认为(x,y)是背景点,反之是前景点。
同时,随着时间的变化,背景图像也会发生缓慢的变化,这时我们要不断更新每个象素点的参数
u(t+1,x,y) = a*u(t,x,y) + (1-a)*I(x,y)
这里,a称为更新参数,表示背景变化的速度,一般情况下,我们不更新d(实验中发现更不更新d,效果变化不大)。
目标跟踪之高斯混合模型---cv实现的更多相关文章
- GMM+Kalman Filter+Blob 目标跟踪
转 http://www.cnblogs.com/YangQiaoblog/p/5462453.html ==========图片版================================== ...
- 高斯混合模型(GMM) - 混合高斯回归(GMR)
http://www.zhihuishi.com/source/2073.html 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲 ...
- 高斯混合模型(理论+opencv实现)
查资料的时候看了一个不文明的事情,转载别人的东西而不标注出处,结果原创无人知晓,转载很多人评论~~标注了转载而不说出处这样的人有点可耻! 写在前面: Gaussian Mixture Model (G ...
- 目标跟踪之ECO:Efficient Convolution Operators for Tracking
一. 相关滤波算法总结 作者首先分析了 影响相关滤波算法效率 和 导致过拟合 的几个原因: 1)Model Size (模型大小) 包括两个方面: - 模型层数,对应多分辨率 Sample,比如多层 ...
- 目标跟踪之粒子滤波---Opencv实现粒子滤波算法
目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方 ...
- 高斯混合模型(GMM)
复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...
- KCF目标跟踪方法分析与总结
KCF目标跟踪方法分析与总结 correlation filter Kernelized correlation filter tracking 读"J. F. Henriques, R. ...
- GMM高斯混合模型学习笔记(EM算法求解)
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一 ...
- 高斯混合模型的EM算法
高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mat ...
随机推荐
- [JOYOI] 1124 花店橱窗
题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目背景 xq和他的老婆xz最近开了一家花店,他们准备把店里最好看的花都摆在橱窗里.但是他们 ...
- Django框架基础知识02-路由及渲染
1.URL(Uniform Resoure Locator)统一资源定位符是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址.互联网上的每个文件都有一个唯一的URL ...
- 让你系统的了解shell
当你在进行登录时,系统会检查的文档:1. /etc/profile:首先,系统会检查这个文件,以定义如下这些变量:PATH.USER.LOGNAME.MAIL.HOSTNAME.HISTSIZE.IN ...
- MQ报错java.lang.IllegalStateException: Failed to load ApplicationContext
这个问题是jdk版本造成的,把jdk1.8换成jdk1.7问题就解决了
- git clone, push, pull, fetch 的用法
Git是目前最流行的版本管理系统,学会Git几乎成了开发者的必备技能. Git有很多优势,其中之一就是远程操作非常简便.本文详细介绍5个Git命令,它们的概念和用法,理解了这些内容,你就会完全掌握Gi ...
- bzoj4950(二分图最大匹配)
[Wf2017]Mission Improbable Time Limit: 1 Sec Memory Limit: 1024 MBSubmit: 105 Solved: 49[Submit][S ...
- @JoinColumn 匹配关联多个字段
两张表结构如下 TABLE_A: ID, COLA1, COLA2 TABLE_B: ID, A_ID, COLB1, COLB2 A和B是一对多的关系. 我在B的BEAN上面,通过Anotation ...
- oracle 启动监听报错TNS-12547: TNS:lost contact
https://blog.csdn.net/liqfyiyi/article/details/7534018
- ubuntu 14.04 安装docker,docker-compose
通过阿里的镜像安装 curl -sSL http://acs-public-mirror.oss-cn-hangzhou.aliyuncs.com/docker-engine/internet | s ...
- MongoDB学习day09--Mongoose数据校验
一.Mongoose检验参数 required : 表示这个数据必须传入max: 用于 Number 类型数据, 最大值 min: 用于 Number 类型数据, 最小值 enum:枚举类型, 要求数 ...