首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案。

为了避免重复的方案被转移,所以我们以硬币种类为第一层循环,这样阶段性的增加硬币。

一定要注意这个第一层循环要是硬币种类,并且初始 f[0] = 1。

之后对于每个询问 (A1, A2, A3, A4, S) ,根据容斥原理,我们要求的答案 Ans 就是 f[S] - (硬币1超限制的方案数) - (硬币2超限制的方案数) - (硬币3超限制的方案数) - (硬币4超限制的方案数) + (硬币1,2超限制的方案数) + (硬币1,3超限制的方案数) + (硬币1,4超限制的方案数) + .... - (硬币1,2,3超限制的方案数) - ... + (硬币1,2,3,4超限制的方案数) 。

怎样求硬币1超限制的方案数呢?我们只要先固定取 (A1+1) 个硬币1,剩余的钱数随便取就可以了,就是 f[S - (A1+1) * V[1]] 。

其余的情况都类似。

容斥的部分使用搜索实现。

 

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std; #define MAXN 100010 typedef long long LL; int n;
int x;
int a[7],b[7]; LL ans; LL f[MAXN]; void dfs(int x,int k,int d)
{
if (d<0)
return ;
if (x==5)
{
if (k & 1)
ans-=f[d];
else
ans+=f[d];
return ;
}
dfs(x+1,k+1,d-(a[x]+1)*b[x]);
dfs(x+1,k,d);
} int main()
{
for (int i=1;i<=4;i++)
scanf("%d",&b[i]);
scanf("%d",&n);
f[0]=1;
for (int i=1;i<=4;i++)
for (int j=b[i];j<=MAXN;j++)
f[j]+=f[j-b[i]];
for (int i=1;i<=n;i++)
{
for (int j=1;j<=4;j++)
scanf("%d",&a[j]);
scanf("%d",&x);
ans=0;
dfs(1,0,x);
printf("%lld\n",ans);
}
return 0;
}

  

 
还有一个鬼畜算法。。搞不清楚啊。。

用容斥原理做背包。

首先,我们要先处理出四种钞票都不限的方案数。

对于每一个询问,我们利用容斥原理,答案为:得到S所有超过数量限制的方案数-硬币1超过限制的方案数-硬币2超过限制的方案数-硬币3超过限制的方案数-硬币4超过限制的方案数+硬币1、2超过限制的方案数+…+硬币1、2、3、4均超过限制的方案数。

而对于每种方案数的求法,也非常简单:假设我们要求的是F[S],则硬币1超过限制(即硬币1取的个数≥d[1]+1,不考虑硬币2、3、4是否超过限制)时的方案数即为F[S-(d[1]+1)×c[1]]。

 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int c[5];
long long F[110000];
struct{long long operator[](int pos){return pos<0?0:F[pos];}}f;
int main(int argc, char *argv[])
{
int T;scanf("%d%d%d%d%d",&c[1],&c[2],&c[3],&c[4],&T);
F[0]=1;
for(int i=1;i<=4;i++)
for(int j=0;j<=100000;j++)
if(j+c[i]<=100000)F[j+c[i]]+=F[j];
while(T--)
{
int d[5],s;scanf("%d%d%d%d%d",&d[1],&d[2],&d[3],&d[4],&s);
long long ans=f[s];
ans-=f[s-(d[1]+1)*c[1]];
ans-=f[s-(d[2]+1)*c[2]];
ans-=f[s-(d[3]+1)*c[3]];
ans-=f[s-(d[4]+1)*c[4]];
ans+=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]];
ans+=f[s-(d[1]+1)*c[1]-(d[3]+1)*c[3]];
ans+=f[s-(d[1]+1)*c[1]-(d[4]+1)*c[4]];
ans+=f[s-(d[2]+1)*c[2]-(d[3]+1)*c[3]];
ans+=f[s-(d[2]+1)*c[2]-(d[4]+1)*c[4]];
ans+=f[s-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
ans-=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]-(d[3]+1)*c[3]];
ans-=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]-(d[4]+1)*c[4]];
ans-=f[s-(d[1]+1)*c[1]-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
ans-=f[s-(d[2]+1)*c[2]-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
ans+=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
#ifdef ONLINE_JUDGE
printf("%lld\n",ans);
#else
printf("%I64d\n",ans);
#endif
}
return 0;
}

  

貌似更快一些= =

【bzoj1042】[HAOI2008]硬币购物的更多相关文章

  1. BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2924  Solved: 1802 [Submit][St ...

  2. BZOJ1042 [HAOI2008]硬币购物 完全背包 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1042 题目概括 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了t ...

  3. [bzoj1042][HAOI2008][硬币购物] (容斥原理+递推)

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...

  4. bzoj1042: [HAOI2008]硬币购物

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  5. BZOJ1042:[HAOI2008]硬币购物(DP,容斥)

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...

  6. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

  7. 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)

    传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...

  8. bzoj1042: [HAOI2008]硬币购物(DP+容斥)

    1600+人过的题排#32还不错嘿嘿 浴谷夏令营讲过的题,居然1A了 预处理出f[i]表示购买价值为i的东西的方案数 然后每次询问进行一次容斥,答案为总方案数-第一种硬币超限方案-第二种超限方案-第三 ...

  9. 【BZOJ1042】[HAOI2008]硬币购物 容斥

    [BZOJ10492][HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值 ...

  10. 【BZOJ-1042】硬币购物 容斥原理 + 完全背包

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1811  Solved: 1057[Submit][Stat ...

随机推荐

  1. NET使用SuperSocket完成TCP/IP通信

    1)为什么使用SuperSocket? 性能高,易上手.有中文文档,我们可以有更多的时间用在业务逻辑上,SuperSocket有效的利用自己的协议解决粘包 2)SuperSocket的协议内容? 命令 ...

  2. JAVA基础——设计模式之观察者模式

    观察者模式是对象的行为模式,又叫发布-订阅(Publish/Subscribe)模式.模型-视图(Model/View)模式.源-监听器(Source/Listener)模式或从属者(Dependen ...

  3. react-native 手势响应以及触摸事件的处理

    react-native 的触摸事件: TouchableHighlight , TouchableNativeFeedBack , TouchableOpacity , TouchableWitho ...

  4. 全国高校绿色计算大赛 预赛第三阶段(Python)(随机数)

    只提交了随机数 (真心不会 T-T ) import csv import random import pandas as pd import numpy as np # 预测结果文件:src/ste ...

  5. java常见日期格式转换以及日期的获取

    package com.test.TestBoot.SingleModel;import java.text.SimpleDateFormat;import java.util.Date;public ...

  6. python第一章计算机基础

    第一章 计算机基础 1.1 硬件 计算机基本的硬件由:CPU / 内存 / 主板 / 硬盘 / 网卡 / 显卡 / 显示器 等组成,只有硬件但硬件之间无法进行交流和通信. 1.2 操作系统 操作系统用 ...

  7. 关于必须添加对程序集“System.Runtime, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”的引用异常问题

    问题描述: 下午调试代码的时候突然发现页面突然异常了,原本以为是代码哪里写错了,后来通过定位发现MVC,UI界面的Linq异常,即关于必须添加对程序集“System.Runtime, Version= ...

  8. wangEditor

    wangEditor 基于javascript和css开发的 Web富文本编辑器, 轻量.简洁.易用.开源免费 http://www.wangeditor.com/index.html API htt ...

  9. bzoj3262 陌上花开 cdq+树状数组

    [bzoj3262]陌上花开 Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义 ...

  10. [NOIP2007] 提高组 洛谷P1098 字符串的展开

    题目描述 在初赛普及组的“阅读程序写结果”的问题中,我们曾给出一个字符串展开的例子:如果在输入的字符串中,含有类似于“d-h”或者“4-8”的字串,我们就把它当作一种简写,输出时,用连续递增的字母获数 ...