线性基

首先我们发现,对于一条路径走过去再走回来是没有意义的,

所以我们可以没有任何其他影响的取得一个环的异或和

所以我们预处理出来所有环的异或和,求出他们的线性基,然后任找一条 \(1 \sim n\) 的路径,找出异或和的最大值

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define ll long long
#define MB 62
using namespace std;
const int MAXN = 400005;
struct edge{
int to, nxt;
ll dis;
}e[MAXN<<1];
int head[MAXN], nume, n, m, tot;
ll a[MAXN], lb[MAXN], d[MAXN];
bool f[MAXN];
void adde(int from, int to, ll dis) {
e[++nume].to = to;
e[nume].dis = dis;
e[nume].nxt = head[from];
head[from] = nume;
}
ll init() {
ll rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
void dfs(int u, int fa) {
f[u] = 1;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(v != fa &&!f[v]) {
d[v] = d[u] ^ e[i].dis;
dfs(v, u);
}else if(v != fa) {
a[++tot] = d[u] ^ d[v] ^ e[i].dis;
}
}
}
void prepare(){
for(int i = 1; i <= tot; i++) {
for(int j = MB; j >= 0; j--) {
if(a[i] & (1ll << j)) {
if(!lb[j]){
lb[j] = a[i];
for(int k = j - 1; k >= 0; k--) if(lb[k] && (lb[j] & (1ll << k))) lb[j] ^= lb[k];
for(int k = j + 1; k <= MB; k++) if(lb[k] & (1ll << j)) lb[k] ^= lb[j];
break;
}else a[i] ^= lb[j];
}
}
}
}
int main() {
n = init(); m = init();
for(int i = 1; i <= m; i++) {
int u = init(), v = init();
ll dis = init();
adde(u, v, dis); adde(v, u, dis);
}
dfs(1, 0);
prepare();
ll ans = d[n];
for(int i = MB; i >= 0; i--) {
if((ans ^ lb[i]) > ans) ans ^= lb[i];
}
cout<<ans<<endl;
return 0;
}

洛谷 [P4151] 最大异或和路径的更多相关文章

  1. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  2. 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]

    题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...

  3. [洛谷P4151][WC2011]最大XOR和路径

    题目大意:给你一张$n$个点$m$条边的无向图,求一条$1->n$的路径,使得经过路径值的异或值最大(重复经过重复计算) 题解:某条路$k$被重复走了两次,那么它的权值对答案的贡献就是$0$,但 ...

  4. 洛谷P4151 [WC2011]最大XOR和路径(线性基)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 首先看到异或就想到线性基 我们考虑有一条路径,那么从这条路径走到图中的任意一个环再走回这条路径上,对答案的贡献是这个环的异或和,走到这个环上的路径对 ...

  5. 洛谷 P4151 BZOJ 2115 [WC2011]最大XOR和路径

    //bzoj上的题面太丑了,导致VJ的题面也很丑,于是这题用洛谷的题面 题面描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如 ...

  6. 洛谷 P3359 改造异或树

    题目描述 给定一棵n 个点的树,每条边上都有一个权值.现在按顺序删掉所有的n-1条边,每删掉一条边询问当前有多少条路径满足路径上所有边权值异或和为0. 输入输出格式 输入格式: 第一行一个整数n. 接 ...

  7. Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)

    题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...

  8. 【洛谷】P1052 过河【DP+路径压缩】

    P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...

  9. 洛谷P4151 最大XOR和路径 [WC2011] 线性基+图论

    正解:线性基+图论 解题报告: 传送门 首先可以思考一下有意义的路径会是什么样子,,,那就一定是一条链+一些环 挺显然的因为一条路径原路返回有没有意义辣?所以一定是走一条链+一些环(当然也可以麻油环, ...

随机推荐

  1. Integer比较浅析

    //Integer 型比较假如是使用 == ,只能比较数值为-128~127数值; 在这个范围内使用的是自动装箱拆箱: //.intValue()使用这个需要确认属性不为null; //equals( ...

  2. MDI和在TabPage

    无奈的.net探索 MDI和在TabPage中增加Form分页? MDI(Multiple Document Interface)是一种在窗口中嵌套窗口的接口, 与之对应的是SDI(Single Do ...

  3. 程序windows上可以上传附件,部署到 linux服务器后出现 “上传目录 不可写” 怎么解决?

    这样的问题一般都是linux  下文件读写权限引起的,用 shell  命名到上传附件的目录(如 cd /data/www/project/upload/),然后执行 shell 文件权限设置: 例如 ...

  4. 诊断 Grid Infrastructure 启动问题 (文档 ID 1623340.1)

    适用于: Oracle Database - Enterprise Edition - 版本 11.2.0.1 和更高版本本文档所含信息适用于所有平台 用途 本文提供了诊断 11GR2 和 12C G ...

  5. 基于Python的Web应用开发实战——3 模板

    要想开发出易于维护的程序,关键在于编写形式简洁且结构良好的代码. 当目前为止,你看到的示例都太简单,无法说明这一点,但Flask视图函数的两个完全独立的作用却被融合在了一起,这就产生了一个问题. 视图 ...

  6. 一个batch如何通过一个网络

    一个batch下所有的图片一起经过整个网络,不是说一张图片经过网络后再让下一张进入网络,这样一个batch一起通过网络计算速度比一张一张这样快

  7. 79 最长公共子串 (lintcode)

    f[i][j]表示的是以第i个结尾和第j个结尾 class Solution { public: /* * @param A: A string * @param B: A string * @ret ...

  8. Java常见对象Object类中的个别方法

    Java常见对象Object类 public int hashCode() : 返回该对象的哈希码值. 注意:哈希值是根据哈希算法计算出来的一个值,这个值和地址值有关,但是不是实际地址值.你可以理解成 ...

  9. 解析Java finally

    以下用几个简单的例子介绍一下finally的用法: 例子1 public class Test { public static void main(String[] args) { System.ou ...

  10. RN原生的安卓UI组件

    https://facebook.github.io/react-native/docs/native-components-android.html 这里有一大堆的原生组件可以用,一些是平台自带的, ...