集训第五周动态规划 C题 编辑距离
Description
Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
Illustration
A G T A A G T * A G G C
| | | | | | |
A G T * C * T G A C G CDeletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
A G T A A G T A G G C
| | | | | | |
A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string x into a string y.
Sample Input
10 AGTCTGACGC
11 AGTAAGTAGGC
Sample Output
4 经典的LIS变种,编辑距离
很显然这道题使用一般的方法是做不出来的,因为这道题要求输出的操作数最少,每一步的方法都应该最优。
所以DP
状态表示:dp[i][j]表示两个字符串
最优子结构:dp[i][j]表示从a[i]到b[j]完全匹配的最小操作数
状态转移方程:1.dp[i][j]=dp[i-1][j-1] (a[i]=b[j]) //相等无需变化,因此操作数也不增加
2.dp[i][j]=min{dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+1} (a[i]!=b[j]) //不相等还要考虑替换,插入操作
3.dp[i][0]=i,dp[0][i]=i //这是初始化步骤,这符合规律,因为这种情况下只能执行删除操作,而这也是动态规划往后扩展的基石
#include"iostream"
#include"cstdio"
using namespace std; const int maxn=; int m,n,len,ans;
char a[maxn],b[maxn];
int dp[][]; void Work()
{
len=max(m,n);
for(int i=;i<=len;i++)
{
dp[i][]=i;
dp[][i]=i;
}
for(int i=;i<=m;i++)
{
for(int j=;j<=n;j++)
{
dp[i][j]=min(dp[i-][j],dp[i][j-])+;
if(a[i]==b[j])
dp[i][j]=dp[i-][j-];
else
dp[i][j]=min(dp[i][j],dp[i-][j-]+);
}
}
ans=dp[m][n];
} void Print()
{
cout<<ans<<endl;
} int main()
{
while(~scanf("%d %s",&m,a+))
{
scanf("%d %s",&n,b+);
Work();
Print();
}
return ;
}
O(OO)O
集训第五周动态规划 C题 编辑距离的更多相关文章
- 集训第五周动态规划 G题 回文串
Description A palindrome is a symmetrical string, that is, a string read identically from left to ri ...
- 集训第五周动态规划 D题 LCS
Description In a few months the European Currency Union will become a reality. However, to join the ...
- 集训第五周 动态规划 B题LIS
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Des ...
- 集训第五周动态规划 I题 记忆化搜索
Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...
- 集训第五周动态规划 H题 回文串统计
Hrdv is interested in a string,especially the palindrome string.So he wants some palindrome string.A ...
- 集训第五周动态规划 F题 最大子矩阵和
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous s ...
- 集训第五周 动态规划 K题 背包
K - 背包 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- 集训第五周动态规划 J题 括号匹配
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- 集训第五周动态规划 E题 LIS
Description The world financial crisis is quite a subject. Some people are more relaxed while others ...
随机推荐
- java web课程设计截图和服务器地址
企业办公测试截图和服务器地址 本篇博客主要围绕以下几个部分展开,登录.系统管理.工作流.个人事务管理.内部邮件.公共信息共六个部分.主要有界面截图和简要介绍. 一.登录.更改密码界面 登录界面包括以管 ...
- layui table 详细讲解
layui.use('table', function () { var table = layui.table; /*第一种原始写法*/ ...
- linux 查看进程和端口
1.进程查看 #ps aux | grep java 2.查看系统与内核相关信息 #uname [-asrmpi] 查看系统位数 # uname -m 3.查看端口 #netstat [-aatunl ...
- Microsoft函数调用约定
Microsoft函数调用约定 对于所有调用共有的约定:ebx.ebp.esi.edi都是calle-save,即由被调用的函数负责它们的保存(如果被调用函数用到了这些寄存器的话) 先看函数调用发生了 ...
- C#模版学习研究
原文链接1 原文链接2 using System; using System.Collections.Generic; using System.Text; using T = System.By ...
- 最简单的struts实例介绍
struts2环境配置 struts2框架,大多数框架都在使用.由于工作需要,开始做Java项目.先学个struts2. 一.下载struts2 有好多版本,我下载的是struts-2.2.1.1 ...
- Python快速教程(转载)
Python快速教程 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 怎么能快速地掌握Python?这是和朋友闲聊时谈起的问题 ...
- Codeforces Round #235 (Div. 2) D (dp)
以为是组合,后来看着像数位dp,又不知道怎么让它不重复用..然后就没思路 了. 其实状压就可以了 状压是可以确定一个数的使用顺序的 利用01也可以确定所有的数的使用以及不重复 dp[i+1<&l ...
- [转]无废话SharePoint入门教程一[SharePoint概述]
本文转自:http://www.cnblogs.com/iamlilinfeng/p/3026332.html 一.前言 听说SharePoint也有一段时间了,可一直处在门外.最近被调到ShareP ...
- 【原】无脑操作:Eclipse + Maven + jFinal + MariaDB 环境搭建
一.开发环境 1.windows 7 企业版 2.Eclipse IDE for Enterprise Java Developers Version: 2019-03 (4.11.0) 3.JDK ...