Minimum Spanning Tree.prim/kruskal(并查集)
开始了最小生成树,以简单应用为例hoj1323,1232(求连通分支数,直接并查集即可)
prim(n*n) 一般用于稠密图,而Kruskal(m*log(m))用于系稀疏图
#include<iostream> //prim n^2
#include<cstdio>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
int a[102][102];int dis[102];int mark[102];
int main()
{
int n;
while(cin>>n&&n)
{
int m=n*(n-1)/2;
int x,y;
memset(a,0x3f,sizeof(a));
memset(dis,0x3f,sizeof(dis));
memset(mark,0,sizeof(mark));
while(m--)
{
scanf("%d%d",&x,&y);
int temp;
scanf("%d",&temp);
if(a[x][y]>temp)
a[x][y]=temp;
a[y][x]=a[x][y];
}
int ans=0;
int cur=1;
mark[cur]=1;
for(int i=1;i<n;i++) //加入n-1条边
{
int minedge=inf; int vertex; //每次找最小的边和新加入的点
for(int j=1;j<=n;j++)
if(mark[j]==0)
{
if(dis[j]>a[cur][j]) //更新
{
dis[j]=a[cur][j];
}
if(minedge>dis[j]) //得最小边
{
minedge=dis[j];
vertex=j;
}
}
ans+=minedge;
cur=vertex; //新加入的点cur
mark[cur]=1; //已经加入
}
printf("%d\n",ans);
}
return 0;
}
#include<iostream> //kruskal ,+并查集维护,m*logm
#include<vector>
#include<algorithm>
#include<cstdio>
using namespace std;
const int inf=0x3f3f3f3f;
int fa[102];
int father(int x){return (x==fa[x]?x:father(fa[x]));}
struct edge
{
int x,y,w;
};
bool my(const edge &a,const edge &b) //先按权重排序
{
return a.w<b.w;
}
int main()
{
int n;
while(cin>>n&&n)
{
int m=n*(n-1)/2;
vector<edge>v(m);
for(int i=1;i<=n;i++) //初始化并查集
fa[i]=i;
for(int i=0;i<m;i++)
{
scanf("%d%d",&v[i].x,&v[i].y);
int temp;
scanf("%d",&temp);
v[i].w=temp;
}
int ans=0;
sort(v.begin(),v.end(),my); //排序
for(int i=0,num=0;num<n-1;i++) //取
{
int xx=father(v[i].x);int yy=father(v[i].y);
if(xx!=yy) //不是同一个连通分量,合并之
{
ans+=v[i].w;
fa[xx]=yy;
num++; //发现一个有效边,共n-1条。
}
}
printf("%d\n",ans);
}
return 0;
}
#include<iostream> //求无向图连通分支数,直接并查集。
#include<vector>
#include<algorithm>
#include<cstdio>
#include<set>
using namespace std;
int fa[1002];
int father(int x){return (x==fa[x]?x:father(fa[x]));}
struct edge
{
int x,y;
};
int main()
{
int n,m;
while(~scanf("%d",&n)&&n)
{
scanf("%d",&m);
vector<edge>v(m);
for(int i=1;i<=n;i++)
{
fa[i]=i; //初始化
}
for(int i=0;i<m;i++)
{
scanf("%d%d",&v[i].x,&v[i].y);
} for(int i=0;i<m;i++)
{
int xx=father(v[i].x); //x--y有边。
int yy=father(v[i].y);
fa[xx]=yy;
}
int count=0;
set<int>se;
for(int i=1;i<=n;i++) //只需看有几个father(i)(等价类),一个连通分量只对应一个。
{
se.insert(father(i));
}
count=se.size()-1;
printf("%d\n",count);
}
return 0;
}
Minimum Spanning Tree.prim/kruskal(并查集)的更多相关文章
- 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...
- Connect the Campus (Uva 10397 Prim || Kruskal + 并查集)
题意:给出n个点的坐标,要把n个点连通,使得总距离最小,可是有m对点已经连接,输入m,和m组a和b,表示a和b两点已经连接. 思路:两种做法.(1)用prim算法时,输入a,b.令mp[a][b]=0 ...
- 最小生成树 (Minimum Spanning Tree,MST) --- Kruskal算法
本文链接:http://www.cnblogs.com/Ash-ly/p/5409265.html 引导问题: 假设要在N个城市之间建立通信联络网,则连通N个城市只需要N - 1条线路.这时,自然会考 ...
- MST(Kruskal’s Minimum Spanning Tree Algorithm)
You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...
- 【HDU 4408】Minimum Spanning Tree(最小生成树计数)
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
- HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- 说说最小生成树(Minimum Spanning Tree)
minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...
- hdu 4408 Minimum Spanning Tree
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
随机推荐
- (4)《Head First HTML与CSS》学习笔记---文本的CSS规则和盒模型;div与span;<a>元素的链接色;伪类
1.每个font-family包含一组共同特征的字体.共五个字体系列: sans-serif----这个系列包括了没有衬线的字体,与serif相比,通常认为这个系列更容易在计算机上识读. serif- ...
- XCode调试器LLDB
与调试器共舞 - LLDB 的华尔兹 你是否曾经苦恼于理解你的代码,而去尝试打印一个变量的值? NSLog(@"%@", whatIsInsideThisThing); 或者跳过一 ...
- JSP和Servlet性能优化经验谈
你的J2EE应用是不是运行的很慢?它们能不能承受住不断上升的访问量?本文讲述了开发高性能.高弹性的JSP页面和Servlet的性能优化技术.其意思是建立尽可能快的并能适应数量增长的用户及其请求.在本文 ...
- 错误:Implicit super constructor xx() is undefined for default constructor.
因为父类定义了一个有参的构造函数且父类中没有默认的无参构造方法,此时编译器不会为你调用默认的构造函数,当子类继承时,必须在自己的构造函数显式调用父类的构造函数,才能确保子类在初始化前父类会被实例化,如 ...
- System.currentTimeMillis()与日期之间的相互转换
System.currentTimeMillis()与日期 之间是可以相互转换的,大多数Android开发者都知道 通过 SimpleDateFormat dateformat = new Simpl ...
- TCP和流
http://www.cnblogs.com/lwzz/archive/2011/07/03/2096963.html TCP是一种流协议(stream protocol).这就意味着数据是以字节流的 ...
- 阿里P7/P8学习路线图——技术封神之路
一.基础篇 JVM JVM内存结构 堆.栈.方法区.直接内存.堆和栈区别 Java内存模型 内存可见性.重排序.顺序一致性.volatile.锁.final 垃圾回收 内存分配策略.垃圾收集器(G1) ...
- iview table 普通表格样式
iview table 普通表格样式 https://run.iviewui.com/UvLFPMb0 <template> <table> <thead> < ...
- New Arrival MB SD Connect Compact 5 (MB SD C4) Star Diagnosis
MB SD Connect Compact 5 has same function as SD C4 but with new design, support both cars and trucks ...
- const函数的使用
const知道吗?解释其作用. 1.const 修饰类的成员变量,表示成员常量,不能被修改. 2.const修饰函数承诺在本函数内部不会修改类内的数据成员,不会调用其它非 const 成员函数. 3. ...