开始了最小生成树,以简单应用为例hoj1323,1232(求连通分支数,直接并查集即可)

prim(n*n) 一般用于稠密图,而Kruskal(m*log(m))用于系稀疏图

#include<iostream>              //prim  n^2
#include<cstdio>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
int a[102][102];int dis[102];int mark[102];
int main()
{
int n;
while(cin>>n&&n)
{
int m=n*(n-1)/2;
int x,y;
memset(a,0x3f,sizeof(a));
memset(dis,0x3f,sizeof(dis));
memset(mark,0,sizeof(mark));
while(m--)
{
scanf("%d%d",&x,&y);
int temp;
scanf("%d",&temp);
if(a[x][y]>temp)
a[x][y]=temp;
a[y][x]=a[x][y];
}
int ans=0;
int cur=1;
mark[cur]=1;
for(int i=1;i<n;i++) //加入n-1条边
{
int minedge=inf; int vertex; //每次找最小的边和新加入的点
for(int j=1;j<=n;j++)
if(mark[j]==0)
{
if(dis[j]>a[cur][j]) //更新
{
dis[j]=a[cur][j];
}
if(minedge>dis[j]) //得最小边
{
minedge=dis[j];
vertex=j;
}
}
ans+=minedge;
cur=vertex; //新加入的点cur
mark[cur]=1; //已经加入
}
printf("%d\n",ans);
}
return 0;
}
#include<iostream>        //kruskal ,+并查集维护,m*logm
#include<vector>
#include<algorithm>
#include<cstdio>
using namespace std;
const int inf=0x3f3f3f3f;
int fa[102];
int father(int x){return (x==fa[x]?x:father(fa[x]));}
struct edge
{
int x,y,w;
};
bool my(const edge &a,const edge &b) //先按权重排序
{
return a.w<b.w;
}
int main()
{
int n;
while(cin>>n&&n)
{
int m=n*(n-1)/2;
vector<edge>v(m);
for(int i=1;i<=n;i++) //初始化并查集
fa[i]=i;
for(int i=0;i<m;i++)
{
scanf("%d%d",&v[i].x,&v[i].y);
int temp;
scanf("%d",&temp);
v[i].w=temp;
}
int ans=0;
sort(v.begin(),v.end(),my); //排序
for(int i=0,num=0;num<n-1;i++) //取
{
int xx=father(v[i].x);int yy=father(v[i].y);
if(xx!=yy) //不是同一个连通分量,合并之
{
ans+=v[i].w;
fa[xx]=yy;
num++; //发现一个有效边,共n-1条。
}
}
printf("%d\n",ans);
}
return 0;
}
#include<iostream>                 //求无向图连通分支数,直接并查集。
#include<vector>
#include<algorithm>
#include<cstdio>
#include<set>
using namespace std;
int fa[1002];
int father(int x){return (x==fa[x]?x:father(fa[x]));}
struct edge
{
int x,y;
};
int main()
{
int n,m;
while(~scanf("%d",&n)&&n)
{
scanf("%d",&m);
vector<edge>v(m);
for(int i=1;i<=n;i++)
{
fa[i]=i; //初始化
}
for(int i=0;i<m;i++)
{
scanf("%d%d",&v[i].x,&v[i].y);
} for(int i=0;i<m;i++)
{
int xx=father(v[i].x); //x--y有边。
int yy=father(v[i].y);
fa[xx]=yy;
}
int count=0;
set<int>se;
for(int i=1;i<=n;i++) //只需看有几个father(i)(等价类),一个连通分量只对应一个。
{
se.insert(father(i));
}
count=se.size()-1;
printf("%d\n",count);
}
return 0;
}

Minimum Spanning Tree.prim/kruskal(并查集)的更多相关文章

  1. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  2. Connect the Campus (Uva 10397 Prim || Kruskal + 并查集)

    题意:给出n个点的坐标,要把n个点连通,使得总距离最小,可是有m对点已经连接,输入m,和m组a和b,表示a和b两点已经连接. 思路:两种做法.(1)用prim算法时,输入a,b.令mp[a][b]=0 ...

  3. 最小生成树 (Minimum Spanning Tree,MST) --- Kruskal算法

    本文链接:http://www.cnblogs.com/Ash-ly/p/5409265.html 引导问题: 假设要在N个城市之间建立通信联络网,则连通N个城市只需要N - 1条线路.这时,自然会考 ...

  4. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

  5. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  6. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  7. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  8. 说说最小生成树(Minimum Spanning Tree)

    minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...

  9. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

随机推荐

  1. CCF|学生排队|Java

    import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Sc ...

  2. iOS 随笔 允许所有不安全网络访问项目

    允许任意请求访问app   App Transport Security Settings -> Allow Arbitrary Loads  YES

  3. B/S网络架构

    B/S基于统一的应用层协议HTTP来交互数据,目前的B/S网络架构大多采用如图所示的架构设计,既要满足海量用户访问请求,又要保持用户请求的快速响应. 当一个用户在浏览器输入www.taobao.com ...

  4. 使用代码编辑器Sublime Text 3进行前端开发及相关快捷键

    推荐理由: Sublime Text:一款具有代码高亮.语法提示.自动完成且反应快速的编辑器软件,不仅具有华丽的界面,还支持插件扩展机制,用她来写代码,绝对是一种享受.相比于浮肿沉重的Eclipse, ...

  5. 深入解析Web Services

    SOA,面向服务器建构,是一款架构,这几年虽然没前几年那么流行,但是还是有很多企业在用,而Web Services是目前适合做SOA的主要技术之一,通过使用Web Services,应用程序可以对外发 ...

  6. Android(java)学习笔记175:Android进程间通讯(IPC)之AIDL

    一.IPC inter process communication  进程间通讯 二.AIDL android  interface  defination  language  安卓接口定义语言 满 ...

  7. JS:输出9*9乘法表

    <html> <head> <title>9*9 multiplication table</title> </head> <body ...

  8. uva12105 Bigger is Better

    更简单的做法:定义状态dp[i][j]表示在已经用了i根火柴的情况下拼出来了剩余部分(是剩余部分,不是已经拼出来了的)为j(需要%m)的最大长度,一个辅助数组p[i][j]表示状态[i][j]的最高位 ...

  9. postman设置环境变量、全局变量

    讲postman环境变量设置之前,先讲一个小插曲,环境变量.全局变量的区别在于Globals,只能用一组,而Environmen可以设置多组,所以我更喜欢设置环境变量 1.环境变量-Environme ...

  10. PyTorch的十七个损失函数

    本文截取自<PyTorch 模型训练实用教程>,获取全文pdf请点击: tensor-yu/PyTorch_Tutorial​github.com 版权声明:本文为博主原创文章,转载请附上 ...