On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 
 
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

InputThere are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M. 
OutputFor each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay. 
Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28

题意:使得每个m都对应一个H时的最短的路径

题解:找一个源点,连接所有的m,再找一个汇点,使得所有H指向这个汇点。

然后跑一边最大费用最小流就ok了

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
using namespace std;
typedef long long ll;
const int MAXX=;
const int INF=0x3f3f3f3f; struct node
{
int st;
int to;
int next;
int cap;
int cost;
}edge[MAXX]; char mp[][];
int head[MAXX],tol;
int pre[MAXX],dis[MAXX];
bool vis[MAXX];
int n,m,p; struct node1
{
int x,y;
node1(){}
node1(int a,int b)
{
x=a;
y=b;
}
};
vector<node1> v1,v2; void init()
{
tol=;
memset(head,-,sizeof(head));
v1.clear();
v2.clear();
} void addedge(int u,int v,int cap,int cost)
{
edge[tol].st=u;
edge[tol].to=v;
edge[tol].cap=cap;
edge[tol].cost=cost;
edge[tol].next=head[u];
head[u]=tol++; edge[tol].st=v;
edge[tol].to=u;
edge[tol].cap=;
edge[tol].cost=-cost;
edge[tol].next=head[v];
head[v]=tol++;
} bool SPFA(int s,int t)
{
queue<int> q;
memset(dis,INF,sizeof(dis));
memset(vis,,sizeof(vis));
memset(pre,-,sizeof(pre));
dis[s]=;
vis[s]=;
q.push(s);
while(!q.empty())
{
int u=q.front(); q.pop();
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int to=edge[i].to;
if(edge[i].cap>&&dis[to]>dis[u]+edge[i].cost)
{
dis[to]=dis[u]+edge[i].cost;
pre[to]=i;
if(!vis[to])
{
vis[to]=;
q.push(to);
}
}
}
}
if(pre[t]==-)return ;
return ;
} int minCostMaxFlow(int s,int t)
{
int cost=;
while(SPFA(s,t))
{
int minn=INF;
for(int i=pre[t];i!=-;i=pre[edge[i].st])
minn=min(minn,edge[i].cap); for(int i=pre[t];i!=-;i=pre[edge[i].st])
{
edge[i].cap-=minn;
edge[i^].cap+=minn;
}
cost+=minn*dis[t];
}
return cost;
} int main()
{
while(scanf("%d%d",&n,&m)&&m&&n)
{
getchar();
init();
for(int i=;i<n;i++)
{
scanf("%s",mp[i]);
getchar();
}
for(int i=;i<n;i++)
for(int j=;j<m;j++)
{
if(mp[i][j]=='m')
v1.push_back(node1(i,j));
if(mp[i][j]=='H')
v2.push_back(node1(i,j)); }
int l=v1.size();
int r=v2.size();
for(int i=;i<v1.size();i++)
{ node1 N1=v1[i];
int x=i+;
addedge(,x,,);
for(int j=;j<v2.size();j++)
{
node1 N2=v2[j];
int y=j+l+;
int D=abs(N1.x-N2.x)+abs(N1.y-N2.y);
addedge(x,y,,D);
addedge(y,x,,D);
if(i==l-)
addedge(y,l+r+,,);
}
}
int ans=minCostMaxFlow(,l++r);
printf("%d\n",ans);
}
return ;
}

Going Home HDU - 1533(最大费用最小流)的更多相关文章

  1. POJ 2195 & HDU 1533 Going Home(最小费用最大流)

    这就是一道最小费用最大流问题 最大流就体现到每一个'm'都能找到一个'H',但是要在这个基础上面加一个费用,按照题意费用就是(横坐标之差的绝对值加上纵坐标之差的绝对值) 然后最小费用最大流模板就是再用 ...

  2. POJ-2135-Farm Tour(最大费用最小流)模板

    Farm Tour POJ - 2135 When FJ's friends visit him on the farm, he likes to show them around. His farm ...

  3. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  4. hdu 1533 Going Home 最小费用最大流 入门题

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  5. hdu 4322(最大费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4322 思路:建图真的是太巧妙了!直接copy大牛的了: 由于只要得到糖就肯定有1个快乐度,在这一点上糖 ...

  6. HDU 4322Candy 最大费用最大流

    由于被小孩子不喜欢的糖果的对小孩产生的效力是一样的,所以我们在网络流的时候先不考虑. 1 - 源点0到1~N个糖果,容量为1,费用为02 - 根据like数组,like[i][j] == 1时在糖果j ...

  7. hdu 1533 Going Home 最小费用最大流 (模板题)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. HDU 4406 最大费用最大流

    题意:现有m门课程需要复习,已知每门课程的基础分和学分,共有n天可以复习,每天分为k个时间段,每个时间段可以复习一门课程,并使这门课程的分数加一,问在不挂科的情况下最高的绩点. 思路:(没做过费用流的 ...

  9. 【进阶——最小费用最大流】hdu 1533 Going Home (费用流)Pacific Northwest 2004

    题意: 给一个n*m的矩阵,其中由k个人和k个房子,给每个人匹配一个不同的房子,要求所有人走过的曼哈顿距离之和最短. 输入: 多组输入数据. 每组输入数据第一行是两个整型n, m,表示矩阵的长和宽. ...

随机推荐

  1. 微信前端js sdk以外的开发

    此时页面中就会出现刚才我画红圈部分的工具条. 这个工具条再加上上面的标题栏工具条. 极大的降低了可视区域的面积. 是否能将它去掉呢?答案是能够的.增加以下代码就能够去掉微信中以下的工具条: docum ...

  2. 一个样例看清楚JQuery子元素选择器children()和find()的差别

    近期在我们的hybrid app项目开发中定位出了一个问题.通过这个问题了解下JQuery选择器find()和children()的差别.问题是这种:我们的混合app是一个单页面应用(main.htm ...

  3. YES,IT IS

  4. bzoj 1367 [ Baltic 2004 ] sequence —— 左偏树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1367 好题啊!论文上的题: 论文上只给出了不下降序列的求法: 先考虑特殊情况,如果原序列上升 ...

  5. 杂项-JSP-Runoob:JSP 标准标签库(JSTL)

    ylbtech-杂项-JSP-Runoob:JSP 标准标签库(JSTL) 1.返回顶部 1. JSP 标准标签库(JSTL) JSP标准标签库(JSTL)是一个JSP标签集合,它封装了JSP应用的通 ...

  6. Spark 机器学习 ---Word2Vec

    package Spark_MLlib import org.apache.spark.ml.feature.Word2Vec import org.apache.spark.sql.SparkSes ...

  7. vs打开wixproj后缀文件

    1.在正常情况下vs是无法打开wixproj工程的,能打开也只能是以记事本方式打开该文件本身 2.所以此时需要下载wixtool,安装后即可打开上述类型文件 3.最好也安装好vs对应版本的扩展包 4. ...

  8. E20170626-gg

    occupy   vt. 占领; 使用,住在…; 使从事,使忙碌; 任职; stack   n. 垛,干草堆; (一排) 烟囱; 层积; 整个的藏书架排列;

  9. RT-Thread 设备驱动I2C浅析及使用

    由于 I2C 可以控制多从机的属性,设备驱动模型分为  I2C总线设备(类似与Linux里面的I2C适配器) + I2C从设备: 系统I2C设备驱动主要实现 I2C 总线设备驱动,而具体的I2C 从设 ...

  10. ZOJ1969-Hard to Believe, but True!

    import re while True: x = raw_input() if(x == '0+0=0'): print 'True' break a,b,c = re.split('[+=]', ...