#include <cstdio>
#include <cstring>
const int MAXN=;//点数的最大值
const int MAXM=;//边数的最大值
const int INF=0x3fffffff; struct Node
{
int from,to,next;
int cap;
}edge[MAXM]; int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];//gap[x]=y :说明残留网络中dep[i]==x的个数为y
int matrix[][];
int n;//n是总的点的个数,包括源点和汇点 void init()
{
tol=;
memset(head,-,sizeof(head));
} void addedge(int u,int v,int w)
{
edge[tol].from=u;
edge[tol].to=v;
edge[tol].cap=w;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].from=v;
edge[tol].to=u;
edge[tol].cap=;
edge[tol].next=head[v];
head[v]=tol++;
}
void BFS(int start,int end)
{
memset(dep,-,sizeof(dep));
memset(gap,,sizeof(gap));
gap[]=;
int que[MAXN];
int front,rear;
front=rear=;
dep[end]=;
que[rear++]=end;
while(front!=rear)
{
int u=que[front++];
if(front==MAXN)front=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
if(dep[v]!=-)continue;
que[rear++]=v;
if(rear==MAXN)rear=;
dep[v]=dep[u]+;
++gap[dep[v]];
}
}
}
int SAP(int start,int end)
{
int res=;
BFS(start,end);
int cur[MAXN];
int S[MAXN];
int top=;
memcpy(cur,head,sizeof(head));
int u=start;
int i;
while(dep[start]<n)
{
if(u==end)
{
int temp=INF;
int inser;
for(i=;i<top;i++)
if(temp>edge[S[i]].cap)
{
temp=edge[S[i]].cap;
inser=i;
}
for(i=;i<top;i++)
{
edge[S[i]].cap-=temp;
edge[S[i]^].cap+=temp;
}
res+=temp;
top=inser;
u=edge[S[top]].from;
}
if(u!=end&&gap[dep[u]-]==)//出现断层,无增广路
break;
for(i=cur[u];i!=-;i=edge[i].next)
if(edge[i].cap!=&&dep[u]==dep[edge[i].to]+)
break;
if(i!=-)
{
cur[u]=i;
S[top++]=i;
u=edge[i].to;
}
else
{
int min=n;
for(i=head[u];i!=-;i=edge[i].next)
{
if(edge[i].cap==)continue;
if(min>dep[edge[i].to])
{
min=dep[edge[i].to];
cur[u]=i;
}
}
--gap[dep[u]];
dep[u]=min+;
++gap[dep[u]];
if(u!=start)u=edge[S[--top]].from;
}
}
return res;
}
void floyd(int matrix[][],int n)
{
for(int k = ;k <= n;k++)
{
for(int i = ;i <= n;i++)
{
for(int j = ;j <= n;j++)
{
if(matrix[i][j] > matrix[i][k] + matrix[k][j])
{
matrix[i][j] = matrix[i][k] + matrix[k][j];
}
}
}
}
}
int main()
{
int k,c,m;
while(~scanf("%d%d%d",&k,&c,&m))
{
for(int i = ;i <= k + c;i++)
{
for(int j = ;j <= k + c;j++)
{
scanf("%d",&matrix[i][j]);
if(matrix[i][j] == && i != j)
{
matrix[i][j] =INF;
}
}
}
floyd(matrix,k + c);
int ans = ;
for(int i = k + ;i <= k + c;i++)
{
for(int j = ;j <= k;j++)
{
if(matrix[i][j] > ans)
{
ans = matrix[i][j];
}
}
}
int s = ,t = k + c + ;
n = k + c + ;
int right = ans,left = ;
while(left + < right)
{
int mid = (left + right) / ;
init();
for(int i = k + ;i <= k + c;i++)
{
addedge(s,i,);
for(int j = ;j <= k;j++)
{
if(matrix[i][j] <= mid)
{
addedge(i,j,);
}
}
}
for(int j = ;j <= k;j++)
{
addedge(j,t,m);
}
if(SAP(s,t) == c)
{
right = mid;
}
else
{
left = mid;
}
}
printf("%d\n",right);
}
return ;
}

题意:给出奶牛、机器之间的距离(包括奶牛-奶牛距离,机器-机器距离,奶牛-机器距离),以及机器的处理奶牛的最大数量,求走得最远的奶牛可以走的最近距离。

分析:源点构造边,指向每一个奶牛顶点,容量为1(因为每个顶点的奶牛数量都是1),然后二分法枚举最短的距离,奶牛-机器距离不大于限定的距离的建一条由奶牛指向机器的边,容量为1,每个机器都建一条指向汇点的边,容量为m.

poj 2112的更多相关文章

  1. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

  2. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  3. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  4. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  5. Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)

    题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...

  6. POJ 2112 - Optimal Milking

    原题地址:http://poj.org/problem?id=2112 题目大意:有K个挤奶机(标号为1 ~ K)和C头奶牛(编号为K + 1 ~ K + C),以邻接矩阵的方式给出它们两两之间的距离 ...

  7. POJ 2112 Optimal Milking(二分+最大流)

    http://poj.org/problem?id=2112 题意: 现在有K台挤奶器和C头奶牛,奶牛和挤奶器之间有距离,每台挤奶器每天最多为M头奶挤奶,现在要安排路程,使得C头奶牛所走的路程中的最大 ...

  8. POJ 2112 Optimal Milking(最大流)

    题目链接:http://poj.org/problem?id=2112 Description FJ has moved his K (1 <= K <= 30) milking mach ...

  9. POJ 2112 Optimal Milking(二分图匹配)

    [题目链接] http://poj.org/problem?id=2112 [题目大意] 给出一些挤奶器,每台只能供给M头牛用,牛和挤奶器之间有一定的距离 现在要让每头牛都挤奶,同时最小化牛到挤奶器的 ...

  10. poj 2112(二分+多重匹配)

    题目链接:http://poj.org/problem?id=2112 思路:由于要求奶牛走的最远距离的最短路程,显然我们可以二分距离,如果奶牛与挤奶器的距离小于等于limit的情况下,能够满足,则在 ...

随机推荐

  1. [C陷阱和缺陷] 第2章 语法“陷阱”

    第2章 语法陷阱 2.1 理解函数声明   当计算机启动时,硬件将调用首地址为0位置的子例程,为了模拟开机时的情形,必须设计出一个C语言,以显示调用该子例程,经过一段时间的思考,得出语句如下: ( * ...

  2. Spring-security配置代码

    @Configuration public static class WebSecurityConfigurer extends WebSecurityConfigurerAdapter{ @Over ...

  3. 发生在升级OS X Yosemite后:修复各种开发环境

    本博文最初发布于我的个人博客<Jerry的乐园> 终于还是忍不住升级了,促使我升级的原动力居然是Alfred的Yosemite theme居然比初始theme好看很多!在升级前就预想到我的 ...

  4. [ Nowcoder Contest 175 #B ] 区间

    \(\\\) \(Description\) 给出一个长度为\(N\)的序列\(A[1]...A[N]\),定义一个合法区间 \([L,R]\) 当且仅当区间\(GCD\) 在这个区间内,求最长合法区 ...

  5. React Native 出现红屏幕报连接服务失败

    最近移动项目组在本人的带领下切换进React Native开发应用,之前没接触过,用了几周之后,发现也就那么回事吧,小玩具项目用用还是可以的.今天Android小姑娘在Windows下出问题解决不了, ...

  6. ElasticSearch 安装使用

    安装: 1.下载ElasticSearch.解压到相关文件夹 2.运行elasticsearch.bat,启动程序 3.在浏览器输入:http://localhost:9200/,显示相关Es内容即安 ...

  7. Java学习1_一些基础1——16.5.4

    每个java程序中都必须有一个main方法,格式为: public class ClassName { public static void main(String[] args) { program ...

  8. blender--(凹凸贴图)................https://jingyan.baidu.com/article/9f63fb917c4becc8400f0ea8.html

    在blender中直接绘制模型凹凸纹理细节 听语音 | 浏览:32 | 更新:2018-02-20 11:18 1 2 3 4 5 6 7 分步阅读 在blender中为了表现更多的模型细节,我们会常 ...

  9. 12C语言标准函数库

    C语言标准函数库 数学函数 三角函数 指数和对数函数 双曲线函数 其它函数 Sqrt() Pow() Exp() Log() Sin() Cos() Tan() 时间函数 查找和排序 Bsearch( ...

  10. jenkins自动部署测试环境

    构建脚本如下: echo "当前目录":$(pwd)echo "当前时间":$(date +%Y-%m-%d_%H:%M)find ./ -type f -na ...