bzoj 3143 [Hnoi2013]游走【高斯消元+dp】
参考:http://blog.csdn.net/vmurder/article/details/44542575
和2337有点像
设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u] \) ,度为 \( in[u] \),边\( (u,v) \) 的经过期望为 \( \frac{x[u]}{in[u]}+\frac{x[v]}{in[v]} \)
那么转换为求每个点的经过期望,\( x[u]=\sum_{v}^{v\subset son(u)}\frac{x[v]}{in[v]} \)
高斯消元即可。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int N=505,M=250005;
using namespace std;
int n,m;
int U[M],V[M],d[N];
double a[N][N],x[N],w[M],ans;
void Gauss(int n,int m)
{
for(int i=1;i<m;i++)
{
int k=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[k][i])<fabs(a[j][i]))
k=j;
if(i!=k)
for(int j=i;j<=m;j++)
swap(a[i][j],a[k][j]);
for(int j=i+1;j<=n;j++)
{
double rate=a[j][i]/a[i][i];
for(k=i;k<=m;k++)
a[j][k]-=a[i][k]*rate;
}
}
for(int i=m-1;i;i--)
{
for(int j=i+1;j<m;j++)
a[i][m]-=a[i][j]*x[j];
x[i]=a[i][m]/a[i][i];
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&U[i],&V[i]);
d[U[i]]++,d[V[i]]++;
}
for(int i=1;i<n;i++)
a[i][i]=-1;
for(int i=1;i<=m;i++)
{
a[U[i]][V[i]]+=1.0/d[V[i]];
a[V[i]][U[i]]+=1.0/d[U[i]];
}
for(int i=1;i<=n;i++)
a[n][i]=0;
a[1][n+1]=-1,a[n][n]=1;
Gauss(n,n+1);
for(int i=1;i<=m;i++)
w[i]=x[U[i]]/d[U[i]]+x[V[i]]/d[V[i]];
sort(w+1,w+m+1);
for(int i=1;i<=m;i++)
ans+=(m-i+1)*w[i];
printf("%.3lf\n",ans);
return 0;
}
bzoj 3143 [Hnoi2013]游走【高斯消元+dp】的更多相关文章
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- Luogu3232 HNOI2013 游走 高斯消元、期望、贪心
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...
- BZOJ3143:[HNOI2013]游走(高斯消元)
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- [HNOI2013][BZOJ3143] 游走 - 高斯消元
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...
随机推荐
- 【Java源码】集合类-优先队列PriorityQueue
一.类继承关系 public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serial ...
- loj6158 A+B Problem (扩展KMP)
题目: https://loj.ac/problem/6158 分析: 先把S串逆置,就是从低位向高位看 我们再弄个T串,S串前面有x个连续的0,那么T串前面也有x个连续的0 第x+1位,满足S[x+ ...
- 学习日常笔记<day17>jdbc基础
1.jdbc入门 1.1.jdbc定义 使用java代码发送sql语句的技术就是jdbc技术 1.2.使用jdbc发送sql前提 需要登录数据库服务器(数据库的IP地址,端口,数据库用户名,密码) / ...
- 怎么配置ODBC microsoft Access 安装(win10)
笔者看着书配置Access连接方法但就是找不到书中的"Access.mdb". 后来才知道.mdb需要自己创建....对于刚入门的我很无语啊!!!!! 下面带你走出小坑 1.从控制 ...
- 如何扩展ArcGIS中的元数据编辑器
http://www.esrichina-bj.cn/old../library/arcnews16/Metadata.htm http://www.esrichina-bj.cn/old../lib ...
- 非计算机专业的伟伯是怎样拿到阿里Offer的。求职励志!!!
写在前面: 2015 年 7 月初.參加阿里巴巴校招内推, 8 月 15 日拿到研发project师 JAVA 的 offer .我的专业并不是计算机,也没有在互联网公司实习过,仅仅有一些学习和面试心 ...
- JavaSE----API之集合(Collection、List及其子类、Set及其子类、JDK1.5新特性)
5.集合类 集合类的由来: 对象用于封装特有数据,对象多了须要存储:假设对象的个数不确定.就使用集合容器进行存储. 集合容器由于内部的数据结构不同,有多种详细容器.不断的向上抽取,就形成了集合框架. ...
- MongoDB 操作手冊CRUD 更新 update
改动记录 概述 MongoDB提供了update()方法用于更新记录. 这种方法接受下面參数: 一个更新条件的JSON对象用于匹配记录,一个更新操作JSON对象用于声明更新操作,和一个选项JS ...
- UIwebView缩放
首先就是需要让webView去设置下可以支持缩放 [__webView setScalesPageToFit:YES]; 如果网页支持缩放只需要上面的一句就可以了.你可以加在谷歌的试一下,但是你要加在 ...
- spring依赖注入(反转控制)
SPRING依赖注入机制(反转控制)解析 Spring能有效地组织J2EE应用各层的对象.不管是控制层的Action对象,还是业务层的 Service对象,还是持久层的DAO对象,都可在Spring的 ...