bzoj 3143 [Hnoi2013]游走【高斯消元+dp】
参考:http://blog.csdn.net/vmurder/article/details/44542575
和2337有点像
设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u] \) ,度为 \( in[u] \),边\( (u,v) \) 的经过期望为 \( \frac{x[u]}{in[u]}+\frac{x[v]}{in[v]} \)
那么转换为求每个点的经过期望,\( x[u]=\sum_{v}^{v\subset son(u)}\frac{x[v]}{in[v]} \)
高斯消元即可。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int N=505,M=250005;
using namespace std;
int n,m;
int U[M],V[M],d[N];
double a[N][N],x[N],w[M],ans;
void Gauss(int n,int m)
{
for(int i=1;i<m;i++)
{
int k=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[k][i])<fabs(a[j][i]))
k=j;
if(i!=k)
for(int j=i;j<=m;j++)
swap(a[i][j],a[k][j]);
for(int j=i+1;j<=n;j++)
{
double rate=a[j][i]/a[i][i];
for(k=i;k<=m;k++)
a[j][k]-=a[i][k]*rate;
}
}
for(int i=m-1;i;i--)
{
for(int j=i+1;j<m;j++)
a[i][m]-=a[i][j]*x[j];
x[i]=a[i][m]/a[i][i];
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&U[i],&V[i]);
d[U[i]]++,d[V[i]]++;
}
for(int i=1;i<n;i++)
a[i][i]=-1;
for(int i=1;i<=m;i++)
{
a[U[i]][V[i]]+=1.0/d[V[i]];
a[V[i]][U[i]]+=1.0/d[U[i]];
}
for(int i=1;i<=n;i++)
a[n][i]=0;
a[1][n+1]=-1,a[n][n]=1;
Gauss(n,n+1);
for(int i=1;i<=m;i++)
w[i]=x[U[i]]/d[U[i]]+x[V[i]]/d[V[i]];
sort(w+1,w+m+1);
for(int i=1;i<=m;i++)
ans+=(m-i+1)*w[i];
printf("%.3lf\n",ans);
return 0;
}
bzoj 3143 [Hnoi2013]游走【高斯消元+dp】的更多相关文章
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- Luogu3232 HNOI2013 游走 高斯消元、期望、贪心
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...
- BZOJ3143:[HNOI2013]游走(高斯消元)
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- [HNOI2013][BZOJ3143] 游走 - 高斯消元
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...
随机推荐
- poj2186 求有向图G中所有点都能到达的点的数量
/*题意:有向图,求这样的点的数量:所有点都能到达它.缩点成有向无环图,思:如果该强连通有出度,那么 从该出度出去的边必然回不来(已经缩点了),所以有出度的强连通必然不是.那么是不是所有出度为0的强连 ...
- SQL SERVER 2012 第四章 连接 JOIN の OUTER JOIN,完全连接FULL JOIN,交叉连接CROSS JOIN
SELECT <SELECT LIST> FROM <the table you want to be the "LEFT" table> <LEFT ...
- HDU 1215.七夕节【筛选法】【7月26】
七夕节 七夕节那天,月老来到数字王国,他在城门上贴了一张告示,而且和数字王国的人们说:"你们想知道你们的还有一半是谁吗?那就依照告示上的方法去找吧!" 人们纷纷来到告示前,都想知道 ...
- 系统安全攻防战:DLL注入技术详解
DLL注入是一种允许攻击者在另一个进程的地址空间的上下文中运行任意代码的技术.攻击者使用DLL注入的过程中如果被赋予过多的运行特权,那么攻击者就很有可能会在DLL文件中嵌入自己的恶意攻击代码以获取更高 ...
- easyui使用心得
一.搭建easyui运行环境 1.下载easyui压缩文件 2.将降压后的文件添加至webapp目录下 3.引用5个必须的js和css文件 <!--引入easyui样式文件--> < ...
- Python中字符运算的优先级
表1-2 运算符优先级 运算符 描述 lambda Lambda表达式 or 布尔“或” and 布尔“与” not x 布尔“非” in,not in 成员测试 is,is not 同一性测试 &l ...
- LINQ体验(1)——Visual Studio 2008新特性
一.写本系列的目的 我平时利用课余零碎时间来学习ASP.NET3.5.LINQ.Silverlight.ASP.NET 3.5 Extensions等新东西,通过笔记形式来记录自己所学的历 程.也给大 ...
- 最齐全的站点元数据meta标签的含义和使用方法
最齐全的站点元数据meta标签的含义和使用方法 随着HTML5的流行和Web技术的不断演变,Meta标签队伍也越来越壮大,从Windows XP的IE6到现在Windows 7.Windows 8的I ...
- iOS开发——高级篇——线程保活
线程保活: 顾名思义,就是保护线程不死(保证线程处于激活状态,生命周期没有结束) 正常情况,当线程执行完一次任务之后,需要进行资源回收,也就意味着生命周期结束 应用场景: 当有一个任务,随时都有可能去 ...
- 如何用DOS命令,获取一个目录下的文件数目
发信人: GOOGOODALLS (我爱Figo), 信区: DOS 标 题: 如何用DOS命令,获取一个目录下的文件数目? 发信站: 水木社区 (Fri Mar 9 08:40:01 2007) ...