题目描述

在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示。例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1​(1,11,1),p_2p2​(2,22,2),p_3p3​(3,63,6),P_4P4​(0,70,7),见图一。

这些点可以用kk个矩形(1 \le k \le 41≤k≤4)全部覆盖,矩形的边平行于坐标轴。当 k=2k=2 时,可用如图二的两个矩形 s_1,s_2s1​,s2​ 覆盖,s_1,s_2s1​,s2​ 面积和为44。问题是当nn个点坐标和kk给出后,怎样才能使得覆盖所有点的kk个矩形的面积之和为最小呢?
约定:覆盖一个点的矩形面积为00;覆盖平行于坐标轴直线上点的矩形面积也为00。各个矩形必须完全分开(边线与顶点也都不能重合)。

输入输出格式

输入格式:

n knk
x_1 y_1x1​y1​
x_2 y_2x2​y2​
... ...

x_n y_nxn​yn​ (0 \le x_i,y_i \le 5000≤xi​,yi​≤500)

输出格式:

输出至屏幕。格式为:

11个整数,即满足条件的最小的矩形面积之和。

输入输出样例

输入样例#1: 复制

4 2
1 1
2 2
3 6
0 7
输出样例#1: 复制

4
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int x[],y[];
int n,k,val,ans=0x7f7f7f7f;
struct nond{
int l,r,u,d;
bool flag;
}v[];
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
bool jud(int i,int j){
if(v[i].l<=v[j].l&&v[i].r>=v[j].l&&v[i].d>=v[j].d&&v[i].u<=v[j].d) return true;
if(v[i].l<=v[j].r&&v[i].r>=v[j].r&&v[i].d>=v[j].d&&v[i].u<=v[j].d) return true;
if(v[i].l<=v[j].l&&v[i].r>=v[j].l&&v[i].d>=v[j].u&&v[i].u<=v[j].u) return true;
if(v[i].l<=v[j].r&&v[i].r>=v[j].r&&v[i].d>=v[j].u&&v[i].u<=v[j].u) return true;
return false;
}
bool judge(){
for(int i=;i<=k;i++)
if(v[i].flag)
for(int j=;j<i;j++)
if(v[j].flag)
if(jud(i,j)) return true;
return false;
}
void dfs(int now){
if(judge()) return ;
val=;
for(int i=;i<=k;i++)
if(v[i].flag)
val+=(v[i].r-v[i].l)*(v[i].d-v[i].u);
if(val>ans) return ;
if(now==n+){
ans=val;
return ;
}
for(int i=;i<=k;i++)
if(!v[i].flag){
v[i].l=y[now];v[i].r=y[now];
v[i].u=x[now];v[i].d=x[now];
v[i].flag=;
dfs(now+);
v[i].flag=;
}
else if(v[i].flag){
int a=v[i].l,b=v[i].r,c=v[i].u,d=v[i].d;
v[i].l=min(v[i].l,y[now]);
v[i].r=max(v[i].r,y[now]);
v[i].u=min(v[i].u,x[now]);
v[i].d=max(v[i].d,x[now]);
dfs(now+);
v[i].l=a;v[i].r=b;
v[i].u=c;v[i].d=d;
}
}
int main(){
n=read();k=read();
for(int i=;i<=n;i++)
scanf("%d%d",&x[i],&y[i]);
dfs();
cout<<ans;
}
 

洛谷 P1034 矩形覆盖的更多相关文章

  1. 洛谷P1034 矩形覆盖

    P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...

  2. 洛谷 - P1034 - 矩形覆盖 - dfs

    https://www.luogu.org/problemnew/show/P1034 可能是数据太水了瞎搞都可以过. 判断两个平行于坐标轴的矩形相交(含顶点与边相交)的代码一并附上. 记得这里的xy ...

  3. [NOIP2002] 提高组 洛谷P1034 矩形覆盖

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  4. 洛谷——P1034 矩形覆盖

    https://www.luogu.org/problem/show?pid=1034 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的 ...

  5. 洛谷 P2218 [HAOI2007]覆盖问题 解题报告

    P2218 [HAOI2007]覆盖问题 题目描述 某人在山上种了\(N\)棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他 ...

  6. P1034 矩形覆盖

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  7. 洛谷 P1191 矩形 题解

    P1191 矩形 题目描述 给出一个 \(n \times n\)的矩阵,矩阵中,有些格子被染成白色,有些格子被染成黑色,现要求矩阵中白色矩形的数量 输入格式 第一行,一个整数\(n\),表示矩形的大 ...

  8. 洛谷——P2082 区间覆盖(加强版)

    P2082 区间覆盖(加强版) 题目描述 已知有N个区间,每个区间的范围是[si,ti],请求出区间覆盖后的总长. 输入输出格式 输入格式: N s1 t1 s2 t2 …… sn tn 输出格式: ...

  9. 洛谷 P1324 矩形分割

    P1324 矩形分割 题目描述 出于某些方面的需求,我们要把一块N×M的木板切成一个个1×1的小方块. 对于一块木板,我们只能从某条横线或者某条竖线(要在方格线上),而且这木板是不均匀的,从不同的线切 ...

随机推荐

  1. CS193p Lecture 4 - Foundation, Attributed Strings

    消息机制 调用一个实例(instance)的方法(method),就是向该实例的指针发送消息(message),实例收到消息后,从自身的实现(implementation)中寻找响应这条消息的方法. ...

  2. 数据库事务ACID和事务的隔离级别

    借鉴:https://blog.csdn.net/zh521zh/article/details/69400053和https://blog.csdn.net/May_3/article/detail ...

  3. Windows10系统可以禁止的服务(按名称排序)

    1.Application LayerGateway Service(Windows必须禁止的10项服务) 2.Bluetooth Handsfree Service(没有蓝牙的用户可以关闭) 3.B ...

  4. 微信小程序 wx.request POST请求------中文乱码问题

    问题: 一个简单的表单,提交后台返回数据“提交成功”. 以为没问题了,但是没过多久后台小哥就问为啥那么多乱码,找了很久原因,发现在提交的时候就已经乱码了. 嗯,前端问题,然后测试GET/POST方法. ...

  5. windows下升级pip失败,重新安装pip最新版本

    环境: python3.6.5 32bit,后改为python3.4.3 32bit pycharm2018旗舰版 问题: pycharm里的pip一直无法升级到10.0.1版本,在cmd中使用升级命 ...

  6. (转)UITextField

    //初始化textfield并设置位置及大小 UITextField *text = [[UITextField alloc]initWithFrame:CGRectMake(20, 20, 130, ...

  7. 剑指Offer(书):合并两个排序的列表

    题目:输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则. 递归版本: public ListNode Merge(ListNode list1,ListNod ...

  8. gnu make规则记录

    1. $(shell CMD) 名称: 执行 shell 命令函数 功能: 在新的 shell 中执行 CMD 命令 返回值: CMD 在 shell 中执行的结果 例如:PLATFORM=$(she ...

  9. python基础学习笔记——开发规范

    > 编码 1 2 3 4 5 所有的 Python 脚本文件都应在文件头标上     # -*- coding:utf-8 -*- 用于设置编辑器,默认保存为 utf-8 格式. > 注释 ...

  10. linux 使用mail 发送邮件

    配置: /etc/mail.rc 追加配置参数 set from=lynctest@iclinux.com smtp="mail.iclinux.com"smtp-auth-use ...