词典,顾名思义,就是通过关键码来查询的结构。二叉搜索树也可以作为词典,不过各种BST,如AVL树、B-树、红黑树、伸展树,结构和操作比较复杂,而且理论上插入和删除都需要O(logn)的复杂度。

在词典中,key和value的地位相同,支持新的循值访问(call by value)的方式。因为词典的访问不再强调关键码的大小次序,因此不属于CBA式算法的范畴,因而算法的复杂度可以突破CBA算法的界限。循值访问要求在词典的内部,数据对象的数值和物理地址建立某种关联。当然,算法时间复杂度的降低,意味着空间复杂度的上升。介绍两种典型的词典,跳转表(skiptable)和哈希表(hashtable),通过他们的操作复杂度,可以清晰地看到这一点。

词典

首先,根据词典需要的功能,定义一个词典模板类。词典需要支持的操作,主要是查询get(),插入put(),删除remove()。

 template<typename K, typename V> struct Dictionary
{
virtual int size() const = ;
virtual bool put(K, V) = ;
virtual V* get(K k) = ;
virtual bool remove(K k) = ;
};

跳转表

跳转表的初衷在于,相对于二叉树更加直观简便。它是一种基于链表的结构,不同之处在于,节点需要包含上下左右四个方向的指针,查询和动态操作仅需要O(logn)的时间。跳转表的总体结构如下图所示。可以看到,需要用两个链表来构成跳转表结构,其中,每一个水平链表称为一层(level),纵向链表的规模称为层高,从S0-Sh,元素的数量递减,最底层的S0包含有表中所有的数据项;同时,同一个数据项可能在几层都出现,沿纵向组成塔(tower),从而也需要给每一个节点定义上下两个指针。

可以自然地想到,这种结构会浪费一定的空间,因为有许多不必要的重复词条,但这也正是跳转表结构效率的来源,空间换时间。如果每个词条都有很多重复,不仅接近于链表O(n)的效率,更是没有必要的浪费。因此约定,在Sk中出现的节点,也出现在Sk+1中的概率为1/2,也就是说,总体上,每一层节点只有它下一层节点数量的的一半。

为了满足四个方向都有指针的需求,需要对链表进行拓展,水平和竖直方向都可以定义后继和前驱的,称为四联表,下面是四联表的实现,总体与链表思路一致,不过因为跳转表的插入规则,只定义了after-above插入的方式。

 #include"Entry.h"
#define QlistNodePosi(T) QuadlistNode<T>*
template<typename T> struct QuadlistNode
{
T entry;
QlistNodePosi(T) pred; QlistNodePosi(T) succ;
QlistNodePosi(T) above; QlistNodePosi(T) below;
QuadlistNode(T e = T(), QlistNodePosi(T) p = NULL, QlistNodePosi(T) s = NULL,
QlistNodePosi(T) a = NULL, QlistNodePosi(T) b = NULL)
:entry(e), pred(p), succ(s), above(a), below(b) {}
QlistNodePosi(T) insertAsSuccAbove(T const& e, QlistNodePosi(T) b = NULL);
};
#include"QuadlistNode.h"
template<typename T> class Quadlist
{
private:
int _size;
QlistNodePosi(T) header; QlistNodePosi(T) trailer;
protected:
void init();
int clear();
public:
Quadlist() { init(); }
~Quadlist() { clear(); delete header; delete trailer; }
int size() const { return _size; }
bool empty() const{ return _size <= ; }
QlistNodePosi(T) first() const { return header->succ; }
QlistNodePosi(T) last() const { return trailer->pred; }
bool valid(QlistNodePosi(T) p)
{
return p && (p != header) && (p != trailer);
}
T remove(QlistNodePosi(T) p);
QlistNodePosi(T) insertAfterAbove(T const& e, QlistNodePosi(T) p, QlistNodePosi(T) b = NULL);
};
template<typename T> void Quadlist<T>::init()
{
header = new QuadlistNode<T>;
trailer = new QuadlistNode<T>;
header->succ = trailer;
header->pred = NULL;
trailer->pred = header;
trailer->succ = NULL;
header->above = trailer->above = NULL;
header->below = trailer->below = NULL;
_size = ;
}
template<typename T> T Quadlist<T>::remove(QlistNodePosi(T) p)
{
p->pred->succ = p->succ; p->succ->pred = p->pred;
T e = p->entry; delete p;
return e;
}
template<typename T> int Quadlist<T>::clear()
{
int oldsize = _size;
while (_size > ) remove(header->succ);
return oldsize;
}

接下来,根据跳转表的结构,我们选取四联表作为每层的链表,所有的层数组成一个普通链表,实现跳转表的结构:

template<typename K, typename V> class Skiplist :public Dictionary<K, V>, public List<Quadlist<Entry<K, V>>*>
{
protected:
bool skipSearch(ListNode<Quadlist<Entry<K, V>>*>* &qlist, QuadlistNode<Entry<K, V>>* &p, K& k);
public:
int size() const { return empty() ? : last()->data->size(); }
int level() { return List:; size(); }
bool put(K k, V v);//插入,允许重复故必然成功
V* get(K k);
bool remove(K k);
};

跳转表直接继承了链表和词典的接口,从而具备两者的功能。链表的每个节点都存储一个四联表指针,即每个节点代表了跳转表中的一层。

查找

查找接口skipSearch(),接受起始层数以及起始节点。get()可以通过调用skipSearch()来获取关键码对应的值。可以自然地想到,高层的四联表中节点少,如果能查找到,可以大大减少时间。所以,查找元素的操作,从最上层开始,如果命中,直接返回;如果未找到目标关键码,返回到不大于目标的节点,并转入下层,继续向后寻找。

 template<typename K, typename V> V* Skiplist<K,V>::get(K k)
{
if (empty()) return NULL;
ListNode<Quadlist<Entry<K, V>>*>* qlist = first();
QuadlistNode<Entry<K, V>>* p = qlist->data->first();
return skipSearch(qlist, p, k) ? &(p->entry.value) : NULL;
}
template<typename K, typename V> bool Skiplist<K, V>::skipSearch(ListNode<Quadlist<Entry<K, V>>*>* &qlist,
QuadlistNode<Entry<K, V>>* &p, K& k)
{
while (true)
{
while (p->succ && (p->entry.key <= k)) p = p->succ;
p = p->pred;//回撤一步
if (p->pred && (p->entry.key == k)) return true;
qlist = qlist->succ;
if (!qlist->succ) return false;//已经是链表的trailer,失败
p = (p->pred) ? p->below : qlist->data->first();//转到下一层(p已经是头哨兵需要转到下一层的头哨兵)
}
}

因为有前面1/2概率生长的约定,空间复杂度的期望值应当为2n,总体为O(n)。相对于链表,只是增加了一个系数,但是查找时横向和纵向的复杂度,都可以大大降低。具体证明就忽略了(其实只要简单的概率论就可以了),可以证明,跳转表的层数期望E(h)=O(logn),整个查找过程中横向和纵向跳转次数均为O(logn)。相对于链表,牺牲了少量的空间,换区了时间复杂度的大大提升。

插入

查找操作,首先验空,若为空插入一个新的四联表。调用skipSearch()转到适当的插入位置。因为创建新节点的过程要在最底层开始,所以要转到最底层,创建一个新的塔底。剩下的任务,就是根据1/2的概率生长,如果要继续插入,那么找到上一层中的前驱节点,把新节点作为它的水平后继、以及刚插入节点的垂直后继插入。

 template<typename K, typename V> bool Skiplist<K, V>::put(K k, V v)
{
Entry<K, V> e = Entry<K, V>(k, v);
if (empty()) InsertAsFirst(new Quadlist<Entry<K, V>>);//插入首个Entry(首层)
ListNode<Quadlist<Entry<K, V>>*>* qlist = first();
QuadlistNode<Entry<K, V>>* p = qlist->data->first();
if (skipSearch(qlist, p, k))
while (p->below) p = p->below;
qlist = last();
QuadlistNode<Entry<K, V>>* b = qlist->data->insertAfterAbove(e, p);//在最底层上插入新的基座
while (rand() & )
{
while (qlist->data->valid(p) && !p->above) p = p->pred;//找到第一个比其高的前驱
if (!qlist->data->valid(p))
{
if (qlist == first())//需要升层而已经是最高层时
InsertAsFirst(new Quadlist<Entry<K, V>>);//新加一层
p = qlist->pred->data->first()->pred;//转至新加层的header
}
else
p = p->above;
qlist = qlist->pred;//升层
b = qlist->data->insertAfterAbove(e, p, b);
}
return true;
}

这里一定要注意一些情况,比如初始跳转表为空、寻找上一层前驱时已经为头哨兵、需要继续向上层插入而跳转表层数不足等情况。插入操作,需要进行一次查找,以及在上层寻找前驱的操作,其他的操作均为O(1)复杂度。总体上,插入操作的时间复杂度为O(logn)。

删除

删除操作相对于插入要容易一些,同样进行一次查找,从上而下顺次删除塔即可。删除完后,自上而下检查一下本层跳转表是否为空,清除空层。需要注意的是四联表的垂直方向,因为删除总是将同一个关键码的节点删除,每次删除操作后整个塔都清空,故不必再格外清除垂直方向的指针了。

 template<typename K, typename V> bool Skiplist<K, V>::remove(K k)
{
if (empty()) return false;
ListNode<Quadlist<Entry<K, V>>*>* qlist = first();
QuadlistNode<Entry<K, V>>* p = qlist->data->first();
if (!skipSearch(qlist, p, k)) return false;
do
{
QuadlistNode<Entry<K, V>>* lower = p->below;
qlist->data->remove(p);
p = lower; qlist = qlist->succ;//记录,向下深入删除
} while (qlist->succ);
while (!empty() && first()->data->empty())//如果Quadlist为空,删除
List::remove(first());
return true;
}

同样,跳转表的删除操作,总体复杂度也不超过跳转表层数,即O(logn)。

词典(一) 跳转表(Skip table)的更多相关文章

  1. 词典(二) 哈希表(Hash table)

    散列表(hashtable)是一种高效的词典结构,可以在期望的常数时间内实现对词典的所有接口的操作.散列完全摒弃了关键码有序的条件,所以可以突破CBA式算法的复杂度界限. 散列表 逻辑上,有一系列可以 ...

  2. 跳跃表Skip List的原理和实现

    >>二分查找和AVL树查找 二分查找要求元素可以随机访问,所以决定了需要把元素存储在连续内存.这样查找确实很快,但是插入和删除元素的时候,为了保证元素的有序性,就需要大量的移动元素了.如果 ...

  3. 数据结构与算法(c++)——跳跃表(skip list)

    今天要介绍一个这样的数据结构: 单向链接 有序保存 支持添加.删除和检索操作 链表的元素查询接近线性时间 ——跳跃表 Skip List 一.普通链表 对于普通链接来说,越靠前的节点检索的时间花费越低 ...

  4. 跳跃表Skip List的原理

    1.二分查找和AVL树查找 二分查找要求元素可以随机访问,所以决定了需要把元素存储在连续内存.这样查找确实很快,但是插入和删除元素的时候,为了保证元素的有序性,就需要大量的移动元素了.如果需要的是一个 ...

  5. oracle exp imp 导入 正在跳过表 plsql 导入表 成功终止 数据 被导入

    http://blog.csdn.net/agileclipse/article/details/12968011 .导入过程中,所有表导入都出现提示, 正在跳过表...某某表名 最后提示成功终止导入 ...

  6. mysql 命令重命名表RENAME TABLE 句法

    mysql 命令重命名表RENAME TABLE 句法 RENAME TABLE tbl_name TO new_tbl_name[, tbl_name2 TO new_tbl_name2,...]更 ...

  7. Openvswitch原理与代码分析(5): 内核中的流表flow table操作

      当一个数据包到达网卡的时候,首先要经过内核Openvswitch.ko,流表Flow Table在内核中有一份,通过key查找内核中的flow table,即可以得到action,然后执行acti ...

  8. Lua中的weak表——weak table

    弱表(weak table)是一个很有意思的东西,像C++/Java等语言是没有的.弱表的定义是:A weak table is a table whose elements are weak ref ...

  9. ABAP内表(internal table)有关的系统变量

    SY-TABIX – 内表当前行的索引号.SY-TABIX 的值可以被以下命令修改,但是只适用于索引表(index table).对于哈希表(Hashed table),这个系统变量的值为空或0. A ...

随机推荐

  1. LeetCode(36)Valid Sudoku

    题目 Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board could ...

  2. NOI模拟赛(3.8)Problem B

    Description Alice和Bob在玩一个游戏,给出一张n*m的棋盘,上面有一些点是障碍,游戏的开始,Alice选定棋盘上任意一个不是障碍的格子,并且将一枚棋子放在其中,然后Bob先手,两人轮 ...

  3. Spring核心技术(八)——Spring自动装载的注解

    本文针对自动装载的一些注解进行描述. 基于注解的容器配置 @Required注解 @Required注解需要应用到Bean的属性的setter方法上面,如下面的例子: public class Sim ...

  4. ICPC模板排版工具

    感谢参考:https://www.cnblogs.com/palayutm/p/6444833.html 额外安装texlive, ubuntu环境提供参考: 1.下载镜像包 https://mirr ...

  5. spark streaming基于Kafka的开发

    spark streaming使用Kafka数据源进行数据处理,本文侧重讲述实践使用. 一.基于receiver的方式 在使用receiver的时候,如果receiver和partition分配不当, ...

  6. 扫描局域网内所有主机和MAC地址的Shell脚本

    #!/bin/bash #author: InBi #date: 2011-08-16 #website: http://www.itwhy.org/2011/08-20/939.html ##### ...

  7. ie下php session不能用(域名的合法定义)

    今天遇到了一个奇怪的问题.应用程序的后台ie下居然无法登陆,老是提示验证码不正确,明明输入是正确的.于是抓包.测试.调试,最终发现罪魁祸首phpsessionid在ie下没有办法写入.研究了一下,发现 ...

  8. 在fragment中获取activity的组件

    在fragment中使用getActivity()即可获取activity的引用

  9. ZOJ 2770_Burn the Linked Camp

    题意: 给定每个兵营的最大容量,以及第i到第j个兵营至少有多少个士兵,问所有兵营一共至少有多少个士兵? 分析: 差分约束系统,注意 第i到第j至少有k个 第i到第j最多有最大容量之和个 每个兵营至少有 ...

  10. HDU——1179 Ollivanders: Makers of Fine Wands since 382 BC.

    Ollivanders: Makers of Fine Wands since 382 BC. Time Limit: 2000/1000 MS (Java/Others)    Memory Lim ...