4260: Codechef REBXOR


Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1534  Solved: 669
[Submit][Status][Discuss]

Description


Input


输入数据的第一行包含一个整数N,表示数组中的元素个数。
第二行包含N个整数A1,A2,…,AN。
 
 

Output


输出一行包含给定表达式可能的最大值。
 

Sample Input


    

Sample Output



HINT


满足条件的(l1,r1,l2,r2)有:(1,2,3,3),(1,2,4,5),(3,3,4,5)。
对于100%的数据,2 ≤ N ≤ 4*105,0 ≤ Ai ≤ 109。

Source


By yts1999

分析:


用trie树处理出每个点作为右端点or左端点所能取到异或最大值,枚举分界点即可

复杂度O(n*30)
 
难道只有我做题的时候有点分不清左右还wa了一次吗,路痴QAQ
 

AC代码:


# include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
using namespace std;
const int N = 4e5 + ;
int ch[N * ][],dt,l[N],r[N],n,a[N],ret;
void clear(int x){ch[x][] = ch[x][] = ;}
void insert(int x)
{
int p = ,v;
for(int i = ;~i;i--)
{
v = x >> i & ;
if(!ch[p][v])ch[p][v] = ++dt,clear(dt);
p = ch[p][v];
}
}
void init(){dt = ;clear();insert();}
int find(int x)
{
int ret = ,v,p = ;
for(int i = ;~i;i--)
{
v = x >> i & ;
if(ch[p][v ^ ])
{
ret += ((v ^ ) << i);
p = ch[p][v ^ ];
}
else p = ch[p][v],ret += (v << i);
}
return ret ^ x;
} int main()
{
scanf("%d",&n);
for(int i = ;i <= n;i++)scanf("%d",&a[i]);
init();for(int i = ;i <= n;i++)r[i] = max(r[i - ],find(a[i])),insert(a[i]);
init();for(int i = n;i >= ;i--)l[i] = max(l[i + ],find(a[i])),insert(a[i]);
for(int i = ;i < n;i++)ret = max(ret,l[i] + r[i + ]);
printf("%d\n",ret);
}

[Bzoj4260]Codechef REBXOR(trie树)的更多相关文章

  1. 【BZOJ4260】Codechef REBXOR Trie树+贪心

    [BZOJ4260]Codechef REBXOR Description Input 输入数据的第一行包含一个整数N,表示数组中的元素个数. 第二行包含N个整数A1,A2,…,AN. Output ...

  2. 【bzoj4260】Codechef REBXOR Trie树

    题目描述 输入 输入数据的第一行包含一个整数N,表示数组中的元素个数. 第二行包含N个整数A1,A2,…,AN. 输出 输出一行包含给定表达式可能的最大值. 样例输入 5 1 2 3 1 2 样例输出 ...

  3. BZOJ4260: Codechef REBXOR (01Tire树)

    题意 题目链接 Sol 首先维护出前缀xor和后缀xor 对每个位置的元素插入到Trie树里面,每次找到和该前缀xor起来最大的元素 正反各做一遍,取最大. 记得要开log倍空间qwq.. #incl ...

  4. bzoj 4260 Codechef REBXOR——trie树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4260 一段的异或和就是两个前缀的异或和.正反扫两边,用trie树算每个位置为左/右端点时最大 ...

  5. BZOJ 4260: Codechef REBXOR (trie树维护异或最大值)

    题意 分析 将区间异或和转化为前缀异或和.那么[L,R][L,R][L,R]的异或和就等于presum[R] xor presum[L−1]presum[R]\ xor \ presum[L-1]pr ...

  6. 【bzoj4260】 Codechef REBXOR trie树

    Input 输入数据的第一行包含一个整数N,表示数组中的元素个数. 第二行包含N个整数A1,A2,…,AN.     Output 输出一行包含给定表达式可能的最大值.   Sample Input ...

  7. [BZOJ4260]Codechef REBXOR(Trie)

    Trie模板题.求出每个前缀和后缀的最大异或和区间,枚举断点就可.不知为何跑得飞快. #include<cstdio> #include<cstring> #include&l ...

  8. bzoj4260 REBXOR——Trie树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4260 对于每个位置,求一个前缀最大值和后缀最大值: 也就是从1到 i 的异或和要找前面某处的 ...

  9. BZOJ 4260: Codechef REBXOR( trie )

    求出前缀和, 那么以第x个元素结尾的最大异或值是max(sumx^sump)(1≤p<x), 用trie加速. 后缀同理, 然后扫一遍就OK了.时间复杂度O(31N) ------------- ...

随机推荐

  1. Redis学习笔记(四)集合进阶

    1.组合与关联多个集合 差集: SDIFF key1 [key2...](返回存在于key1但不存在其他集合中的元素) SDIFFSTORE destination key1 [key2...](将存 ...

  2. Docker Hello World容器运行报错的解决办法

    费了好大力气从Docker官网下载了Docker Community Editor的安装镜像,Docker.dmg, 总共将近500MB,双击进行安装: 命令行里使用docker version查看版 ...

  3. ECharts是我接触过的最优秀的可视化工具,也是进步最快的软件,希望它早日成为世界级的开源项目。

    ECharts的广泛网址: http://echarts.baidu.com/doc/example.html 零编程玩转图表: http://tushuo.baidu.com/?qq-pf-to=p ...

  4. cyclic swapping algorithm

    原文见:https://leetcode.com/problems/couples-holding-hands/discuss/113362/JavaC%2B%2B-O(N)-solution-usi ...

  5. liunx防火墙的基本操作

    centos7中的使用 CentOS 7.0默认使用的是firewall作为防火墙 查看防火墙状态------->firewall-cmd --state 停止firewall-------&g ...

  6. DROP VIEW - 删除一个视图

    SYNOPSIS DROP VIEW name [, ...] [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP VIEW 从数据库中删除一个现存的视图. 执行这条 ...

  7. Must set property 'expression' before attempting to match

    因为这个问题没有直接指向问题的地点, 所以找起来不是很容易. 但是如果找不到, 这个错就会一直都存在. 原因分析: 在使用切面编程的时候, 没有把切入点配置全面 解决方法: 在before, afte ...

  8. scanf_s获取参数,清空缓冲区,判断是否读取成功

    #include<stdio.h> int main() { ]; ) { printf("Please input:\n"); ); ) { printf(" ...

  9. spoj-TSUM Triple Sums

    题目描述 题解: 很吊的容斥+$FFT$,但是并不难. 首先,由于有重复,我们要容斥. 怎么办? 记录三个多项式, 只取一个:$w1$; 相同物体拿两个:$w2$; 相同物体拿三个:$w3$; 然后答 ...

  10. 条款30:透彻了解inline的里里外外(understand the ins and outs of inlining)

    NOTE: 1.将大多数inline限制在小型 被频繁调用的函数身上.这可使日后的调试过程和二进制升级(binary upgradability)更容易,也可使潜在的代码膨胀问题最小化, 使程序的速度 ...