游走 bzoj 3143
游走
【问题描述】
【输入格式】
【输出格式】
【样例输入】
3 3
2 3
1 2
1 3
【样例输出】
3.333
【样例说明】
题解:
题意是给一个简单无向连通图,给每条边赋上权值,使期望值最小
贪心让被走到概率大的边的权值小,就可得到最小的期望值
设每个点被走到的概率为p, 出度为d
那么p[i] = Σ p[j] / d[j] (i,j 之间有连边) (从 j 出发选到 i 与 j 连边的概率为 1 / d[j])
移项得 Σ p[j] / d[j] - p[i] = 0
对于每个点我们都可以列出一个含有n个未知数的方程
特别地,p[1]概率需要加一 , p[n] = 1 (起点为1,终点为n)
那么就可以进行高斯消元啦
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
inline void Scan(int &x)
{
char c;
while((c = getchar()) < '' || c > '');
x = c - '';
while((c = getchar()) >= '' && c <= '') x = (x << ) + (x << ) + c - '';
}
double eps = 1e-;
int n, m;
double c[];
double a[][];
int x[], y[];
int de[];
double ans;
inline void Solve()
{
int now;
double t;
for(int i = ; i <= n; ++i)
{
now = i;
while(fabs(a[i][now]) <= eps && now <= n) ++now;
if(now > n) continue;
for(int j = ; j <= n + ; ++j) swap(a[i][j], a[now][j]);
t = a[i][i];
for(int j = ; j <= n + ; ++j) a[i][j] /= t;
for(int j = ; j <= n; ++j)
if(i != j)
{
t = a[j][i];
for(int k = ; k <= n + ; ++k)
a[j][k] -= a[i][k] * t;
}
}
}
int main()
{
Scan(n), Scan(m);
for(int i = ; i <= m; ++i)
{
Scan(x[i]), Scan(y[i]);
++de[x[i]], ++de[y[i]];
}
for(int i = ; i <= m; ++i)
{
a[x[i]][y[i]] += 1.0 / (double) de[y[i]];
a[y[i]][x[i]] += 1.0 / (double) de[x[i]];
}
for(int i = ; i <= n + ; ++i) a[n][i] = ;
for(int i = ; i <= n; ++i) a[i][i] = -;
a[][n + ] = -;
Solve();
for(int i = ; i <= m; ++i)
c[i] = a[x[i]][n + ] / (double) de[x[i]] + a[y[i]][n + ] / (double) de[y[i]];
sort(c + , c + + m);
for(int i = ; i <= m; ++i)
ans += c[i] * (m - i + );
printf("%.3lf", ans);
}
游走 bzoj 3143的更多相关文章
- 3143: [Hnoi2013]游走 - BZOJ
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- BZOJ 3143 游走 | 数学期望 高斯消元
啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...
- 【BZOJ】【3143】【HNOI2013】游走
数学期望/高斯消元/贪心 啊……用贪心的思路明显是要把经过次数期望越大的边的权值定的越小,那么接下来的任务就是求每条边的期望经过次数. 拆边为点?nonono,连接x,y两点的边的期望经过次数明显是 ...
- BZOJ 3143 游走(高斯消元)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3143 题意:一个无向连通图,顶点从1编号到n,边从1编号到m.小Z在该图上进行随机游走, ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- bzoj 3143 随机游走
题意: 给一个简单无向图,一个人从1号节点开始随机游走(即以相同概率走向与它相邻的点),走到n便停止,问每条边期望走的步数. 首先求出每个点期望走到的次数,每条边自然是从它的两个端点走来. /**** ...
- bzoj 3143: [Hnoi2013]游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
随机推荐
- .Net多线程编程—任务Task
1 System.Threading.Tasks.Task简介 一个Task表示一个异步操作,Task的创建和执行是独立的. 只读属性: 返回值 名称 说明 object AsyncState 表示在 ...
- svn 常用命令总结
svn 命令篇 svn pget svn:ignore // 查看忽略项 svn commit -m "提交说明" // 提交修改 svn up(update) // 获取最新版本 ...
- NET Core-学习笔记(四)
经过前面分享的三篇netcore心得再加上本篇分享的知识,netcore大部分常用知识应该差不多了,接下来将不会按照章节整合一起分享,因为涉及到的东西整合到一起篇幅太大了,所以后面分享将会按照某一个知 ...
- 【Web动画】SVG 实现复杂线条动画
在上一篇文章中,我们初步实现了一些利用基本图形就能完成的线条动画: [Web动画]SVG 线条动画入门 当然,事物都是朝着熵增焓减的方向发展的,复杂线条也肯定比有序线条要多. 很多时候,我们无法人工去 ...
- ThinkPHP+Smarty模板中截取包含中英文混合的字符串乱码的解决方案
好几天没写博客了,其实有好多需要总结的,因为最近一直在忙着做项目,但是困惑了几天的Smarty模板中截取包含中英文混合的字符串乱码的问题,终于解决了,所以记录下来,需要的朋友看一下: 出现乱码的原因: ...
- C++ 拷贝构造函数和赋值运算符
本文主要介绍了拷贝构造函数和赋值运算符的区别,以及在什么时候调用拷贝构造函数.什么情况下调用赋值运算符.最后,简单的分析了下深拷贝和浅拷贝的问题. 拷贝构造函数和赋值运算符 在默认情况下(用户没有定义 ...
- Windows API 设置窗口下控件Enable属性
参考页面: http://www.yuanjiaocheng.net/webapi/create-crud-api-1-put.html http://www.yuanjiaocheng.net/we ...
- spring maven pom.xml设置
spring pom.xml设置 <?xml version="1.0" encoding="UTF-8"?> <project xmlns= ...
- javascript排序
利用array中的sort()排序 w3cfunction sortNumber(a,b) { return a - b } var arr = new Array(6) arr[0] = " ...
- IT雇员及外包商选择:人品第一
最近,苹果iOS操作系统和智能手机爆出了一个奇葩故障,在播放特定一段五秒钟的视频时能导致手机死机.唯一的解决办法是按住电源键和Home按键进行手机的重启. 第十八届中国国际高新技术成果交易会在深圳举办 ...