13.4 横向扩展带来性能提升

很多NoSQL系统都是基于键值模型的,因此其查询条件也基本上是基于键值的查询,基本不会有对整个数据进行查询的时候。由于基本上所有的查询操作都是基本键值形式的,因此分片通常也基于数据的键来做:键的一些属性会决定这个键值对存储在哪台机器上。下面我们将会对hash分片和范围分片两种分片方式进行描述。

3.4.2 通过协调器进行数据分片

由于CouchDB专注于单机性能,没有提供类似的横向扩展方案,于是出现了两个项目:Lounge 和 BigCouch,他们通过提供一个proxy层来对CouchDB中的数据进行分片。在这种架构中,proxy作为CouchDB集群的前端机器,接受和分配请求到后端的多台CouchDB上。后端的CouchDB 之间并没有交互。协调器会将按操作的key值将请求分配到下层的具体某台机器。 Twitter 自己实现了一个叫Gizzard的协调器,可以实现数据分片和备份功能。Gizzard不关心数据类型,它使用树结构来存储数据范围标识,你可以用它来对SQL或者NoSQL系统进行封装。

13.4.3 一致性hash环算法

好的hash算法可以使数据保持比较均匀的分布。这使得我们可以按这种分布将数据保存布多台机器上。一致性hash是一种被广泛应用的技术,其最早在一个叫distributed hash tables (DHTs)的系统中进行使用。那些类Dynamo的应用,比如Cassandra、Voldemort和Riak,基本上都使用了一致性hash算法。

备份数据

一致性hash下的数据备份通常采用下面的方法:将数据冗余的存在其归属的节点的顺序往下的节点,例如你的冗余系数为3(即数据会在不同节点中保存三份),那么如果通过hash计算你的数据在A区间[7,233],你的数据会被同时保存在A,B,C三个节点上。这样如果A节点出现故障,那么B,C节点就能处理这部分数据的请求了。而某些设计会使E节点将自己的范围扩大到A233,以接受对出故障的A节点的请求。

优化的数据分配策略

为了解决由于节点比较少导致数据分配不均的问题,很多DHT系统都实现了一种叫做虚拟节点的技术。例如4个虚拟节点的系统中,A节点可能被虚拟化成A_1,A_2,A_3,A_4这四个虚拟节点,然后对这四个虚拟节点再进行hash运算,A节点负责的key值区间就比较分散了。

13.4.4 连续范围分区

使用连续范围分区的方法进行数据分片,需要我们保存一份映射关系表,标明哪一段key值对应存在哪台机器上。和一致性hash类似,连续范围分区会把key值按连续的范围分段,每段数据会被指定保存在某个节点上,然后会被冗余备份到其它的节点。和一致性hash不同的是,连续范围分区使得key值上相邻的两个数据在存储上也基本上是在同一个数据段。这样数据路由表只需记录某段数据的开始和结束点[start,end]就可以了。 通过动态调整数据段到机器结点的映射关系,可以更精确的平衡各节点机器负载。如果某个区段的数据负载比较大,那么负载控制器就可以通过缩短其所在节点负责的数据段,或者直接减少其负责的数据分片数目。通过添加这样一个监控和路由模块,使我们能够更好的对数据节点进行负载均衡。

BigTable的处理方式

Google BigTable 论文中描述了一种范围分区方式,它将数据切分成一个个的tablet数据块。每个tablet保存一定数量的键值对。然后每个Tablet 服务器会存储多个tablet块,具体每个Tablet服务器保存的tablet数据块数,则是由服务器压力来决定的。 每个tablet大概100-200MB大。如果tablet的尺寸变小,那么两个tablet可能会合并成一个tablet,同样的如果一个tablet过大,它也会被分裂成两个tablet,以保持每个tablet的大小在一定范围内。在整个系统中有一个master机器,会根据tablet的大小、负载情况以及机器的负载能力等因素动态地调整tablet在各个机器上的分布。

master服务器会把 tablet 的归属关系存在元数据表里。当数据量非常大时,这个元数据表实际也会变得非常大,所以归属关系表实际上也是被切分成一个个的tablet保存在tablet服务器中的。查询数据的时候就需要二次查询。

故障处理

在BigTable中,master机器是一个故障单点,不过系统可以容忍短时间的master故障。另一方面,如果tablet 服务器故障,那么master可以把对其上tablet的所有请求分配到其它机器节点。 为了监测和处理节点故障,BigTable实现了一个叫Chubby的模块,Chubby是一个分布式的锁系统,用于管理集群成员及检测各成员是否存活。ZooKeeper是Chubby的一个开源实现,有很多基于 Hadoop 的项目都使用它来进行二级master和tablet节点的调度。

基于范围分区的NoSQL项目

HBase 借鉴了BigTable的分层理论来实现范围分区策略。tablet相关的数据存在HDFS里。HDFS 会处理数据的冗余备份,并负责保证各备份的一致性。而像处理数据请求,修改存储结构或者执行tablet的分裂和合并这种事,是具体的tablet服务器来负责的。 MongoDB也用了类似于BigTable的方案来实现范围分区。他用几台配置机器组成集群来管理数据在节点上的分布。这几台机器保存着一样的配置信息,他们采用 two-phase commit 协议来保证数据的一致性。这些配置节点实际上同时扮演了BigTable中的master的路由角色,及Chubby 的高可用性调度器的角色。而MongoDB具体的数据存储节点是通过其Replica Sets方案来实现数据冗余备份的。 Cassandra 提供了一个有序的分区表,使你可以快速对数据进行范围查询。Cassandra也使用了一致性hash算法进行数据分配,但是不同的是,它不是直接按单条数据进行hash,而是对一段范围内的数据进行hash,也就是说20号数据和21号数据基本上会被分配在同一台机器节点上。 Twitter的Gizzard框架也是通过使用范围分区来管理数据在多个节点间的备份与分配。

13.4.5 选择哪种分区策略

如果你需要经常做范围查询,需要按顺序对key值进行操作,那么你选择范围分区会比较好。那如果我不会进行范围查询或者顺序查询呢?这时候hash分区相对来说可能更方便一点,而且hash分区时可能通过虚拟结点的设置来解决hash不均的问题。在hash分区中,基本上只要在客户端执行相应的hash函数就能知道对应的数据存在哪个节点上了。而如果考虑到节点故障后的数据转移情况,可能获取到数据存放节点就会麻烦一些了。 范围分区要求在查询数据前对配置节点还要进行一次查询,如果没有特别好的高可用容灾方案,配置节点将会是一个危险的故障单点。当然,你可以把配置节点再进行一层负载均衡来减轻负载。而范围分区时如果某个节点故障了,它上面的数据可以被分配到多个节点上,而不像在一致性hash时,只能迁移到其顺序的后一个节点,造成下一个节点的负载飙升。

未完待续!

NoSQL生态系统——hash分片和范围分片两种分片的更多相关文章

  1. sharding-jdbc 分库分表的 4种分片策略,还蛮简单的

    上文<快速入门分库分表中间件 Sharding-JDBC (必修课)>中介绍了 sharding-jdbc 的基础概念,还搭建了一个简单的数据分片案例,但实际开发场景中要远比这复杂的多,我 ...

  2. 两种实现方式mycat多租户,枚举分片,注解拦截

    第一种: 优点:支持进一步分片 缺点:schema配置繁琐 注解式  /*!mycat:schema=[schemaName] */   注意:这在navicat 里面是会报错的,请用命令行登陆myc ...

  3. NoSQL生态系统——类似Bigtable列存储,或者Dynamo的key存储(kv存储如BDB,结构化存储如redis,文档存储如mongoDB)

    摘自:http://www.ituring.com.cn/article/4002# NoSQL系统的数据操作接口应该是非SQL类型的.但在NoSQL社区,NoSQL被赋予了更具有包容性的含义,其意为 ...

  4. Mysql系列六:(Mycat分片路由原理、Mycat常用分片规则及对应源码介绍)

    一.Mycat分片路由原理 我们先来看下面的一个SQL在Mycat里面是如何执行的: , ); 有3个分片dn1,dn2,dn3, id=5000001这条数据在dn2上,id=10000001这条数 ...

  5. 二、mycat15种分片规则

    一.分片枚举 通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则,配置如下: <tab ...

  6. NoSQL生态系统——一致性RWN协议,向量时钟,gossip协议监测故障

    13.5 一致性 在NoSQL中,通常有两个层次的一致性:第一种是强一致性,既集群中的所有机器状态同步保持一致.第二种是最终一致性,既可以允许短暂的数据不一致,但数据最终会保持一致.我们先来讲一下,在 ...

  7. Mongodb 笔记07 分片、配置分片、选择片键、分片管理

    分片 1. 分片(sharding)是指将数据拆分,将其分散存放在不同的机器上的过程.有时也用分区(partitioning)来表示这个概念.将数据分散到不同的机器上,不需要功能强大的大型计算机就可以 ...

  8. mongo 3.4分片集群系列之八:分片管理

    这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...

  9. Solr分片机制以及Solrcloud搭建及分片操作

    Solr分片描述 分片是集合的逻辑分区,包含集合中文档的子集,这样集合中的每个文档都正好包含在一个分片中.集合中包含每个文档的分片取决于集合的整体"分片"策略. 当您的集合对于一个 ...

随机推荐

  1. angularjs的三目运算

    前言:前几天写代码的时候遇到一个问题,有一个按钮,有"已关注"和"+关注"两种状态,需要对这两种状态的按钮的背景颜色进行区分,单后点击"已关注&quo ...

  2. C语言-自定义函数

    C语言自定义函数 --1-- 自定义函数定义 1.1 无参无返回值函数 1.2 无参有返回值函数 1.3 有参无返回值函数 1.4 有参有返回值函数 --2-- 函数的参数 2.1 形式参数介绍和使用 ...

  3. 24章 创建TPL自定义模板(1)

    鼓励分离 促进分工 smarty强大的模板引擎 自己开发可以深入了解模板引擎原理,并且简化(安全性,兼容性和功能不如开源的模板引擎) 流程图

  4. jira 6.3.6安装-汉化-破解

    jira是是一个国外的项目管理软件,收费的,至于功能什么的这里就不具体说了,大家可以网上查看有很多描述的 首先你要在JIRA官网注册一个账户,可以有30天的试用期,网上很多教程是让你去网上搜一个密钥, ...

  5. tomcat7 日志设置为log4j

    tomcat的日志设置用log4j的官方文档:http://tomcat.apache.org/tomcat-7.0-doc/logging.html 1. 下载tomcat-juli.jar, to ...

  6. VBS整人代码

    记得刚开始学VB脚本语言的时候,写了一段调用系统进程的代码,挺好的: dim wshif msgbox("笑笑很帅",vbyesno,"请回答是或否")=vby ...

  7. ORACLE常用SQL优化hint语句

    在SQL语句优化过程中,我们经常会用到hint,现总结一下在SQL优化过程中常见Oracle HINT的用法: 1. /*+ALL_ROWS*/ 表明对语句块选择基于开销的优化方法,并获得最佳吞吐量, ...

  8. jquery.validate使用 - 自定义错误信息

    自定义错误消息的显示方式 默认情况下,验证提示信息用label元素来显示, 并且会添加css class, 通过css可以很方便设置出错控件以及错误信息的显示方式. /* 输入控件验证出错*/form ...

  9. underscore api

    http://files.cnblogs.com/files/hwd13/underscore.rar

  10. TFS二次开发系列:七、TFS二次开发的数据统计以PBI、Bug、Sprint等为例(一)

    在TFS二次开发中,我们可能会根据某一些情况对各个项目的PBI.BUG等工作项进行统计.在本文中将大略讲解如果进行这些数据统计. 一:连接TFS服务器,并且得到之后需要使用到的类方法. /// < ...