1. option = {
  2. backgroundColor: '#1b1b1b',
  3. color: ['gold','aqua','lime'],
  4. title : {
  5. text: '模拟迁徙',
  6. subtext:'数据纯属虚构',
  7. x:'center',
  8. textStyle : {
  9. color: '#fff'
  10. }
  11. },
  12. tooltip : {
  13. trigger: 'item',
  14. formatter: '{b}'
  15. },
  16. legend: {
  17. orient: 'vertical',
  18. x:'left',
  19. data:['北京 Top10', '上海 Top10', '广州 Top10'],
  20. selectedMode: 'single',
  21. selected:{
  22. '上海 Top10' : false,
  23. '广州 Top10' : false
  24. },
  25. textStyle : {
  26. color: '#fff'
  27. }
  28. },
  29. toolbox: {
  30. show : true,
  31. orient : 'vertical',
  32. x: 'right',
  33. y: 'center',
  34. feature : {
  35. mark : {show: true},
  36. dataView : {show: true, readOnly: false},
  37. restore : {show: true},
  38. saveAsImage : {show: true}
  39. }
  40. },
  41. dataRange: {
  42. min : 0,
  43. max : 100,
  44. calculable : true,
  45. color: ['#ff3333', 'orange', 'yellow','lime','aqua'],
  46. textStyle:{
  47. color:'#fff'
  48. }
  49. },
  50. series : [
  51. {
  52. name: '全国',
  53. type: 'map',
  54. roam: true,
  55. hoverable: false,
  56. mapType: 'china',
  57. itemStyle:{
  58. normal:{
  59. borderColor:'rgba(100,149,237,1)',
  60. borderWidth:0.5,
  61. areaStyle:{
  62. color: '#1b1b1b'
  63. }
  64. }
  65. },
  66. data:[],
  67. markLine : {
  68. smooth:true,
  69. symbol: ['none', 'circle'],
  70. symbolSize : 1,
  71. itemStyle : {
  72. normal: {
  73. color:'#fff',
  74. borderWidth:1,
  75. borderColor:'rgba(30,144,255,0.5)'
  76. }
  77. },
  78. data : [
  79. [{name:'北京'},{name:'包头'}],
  80. [{name:'北京'},{name:'北海'}],
  81. [{name:'北京'},{name:'广州'}],
  82. [{name:'北京'},{name:'郑州'}],
  83. [{name:'北京'},{name:'长春'}],
  84. [{name:'北京'},{name:'长治'}],
  85. [{name:'北京'},{name:'重庆'}],
  86. [{name:'北京'},{name:'长沙'}],
  87. [{name:'北京'},{name:'成都'}],
  88. [{name:'北京'},{name:'常州'}],
  89. [{name:'北京'},{name:'丹东'}],
  90. [{name:'北京'},{name:'大连'}],
  91. [{name:'北京'},{name:'东营'}],
  92. [{name:'北京'},{name:'延安'}],
  93. [{name:'北京'},{name:'福州'}],
  94. [{name:'北京'},{name:'海口'}],
  95. [{name:'北京'},{name:'呼和浩特'}],
  96. [{name:'北京'},{name:'合肥'}],
  97. [{name:'北京'},{name:'杭州'}],
  98. [{name:'北京'},{name:'哈尔滨'}],
  99. [{name:'北京'},{name:'舟山'}],
  100. [{name:'北京'},{name:'银川'}],
  101. [{name:'北京'},{name:'衢州'}],
  102. [{name:'北京'},{name:'南昌'}],
  103. [{name:'北京'},{name:'昆明'}],
  104. [{name:'北京'},{name:'贵阳'}],
  105. [{name:'北京'},{name:'兰州'}],
  106. [{name:'北京'},{name:'拉萨'}],
  107. [{name:'北京'},{name:'连云港'}],
  108. [{name:'北京'},{name:'临沂'}],
  109. [{name:'北京'},{name:'柳州'}],
  110. [{name:'北京'},{name:'宁波'}],
  111. [{name:'北京'},{name:'南京'}],
  112. [{name:'北京'},{name:'南宁'}],
  113. [{name:'北京'},{name:'南通'}],
  114. [{name:'北京'},{name:'上海'}],
  115. [{name:'北京'},{name:'沈阳'}],
  116. [{name:'北京'},{name:'西安'}],
  117. [{name:'北京'},{name:'汕头'}],
  118. [{name:'北京'},{name:'深圳'}],
  119. [{name:'北京'},{name:'青岛'}],
  120. [{name:'北京'},{name:'济南'}],
  121. [{name:'北京'},{name:'太原'}],
  122. [{name:'北京'},{name:'乌鲁木齐'}],
  123. [{name:'北京'},{name:'潍坊'}],
  124. [{name:'北京'},{name:'威海'}],
  125. [{name:'北京'},{name:'温州'}],
  126. [{name:'北京'},{name:'武汉'}],
  127. [{name:'北京'},{name:'无锡'}],
  128. [{name:'北京'},{name:'厦门'}],
  129. [{name:'北京'},{name:'西宁'}],
  130. [{name:'北京'},{name:'徐州'}],
  131. [{name:'北京'},{name:'烟台'}],
  132. [{name:'北京'},{name:'盐城'}],
  133. [{name:'北京'},{name:'珠海'}],
  134. [{name:'上海'},{name:'包头'}],
  135. [{name:'上海'},{name:'北海'}],
  136. [{name:'上海'},{name:'广州'}],
  137. [{name:'上海'},{name:'郑州'}],
  138. [{name:'上海'},{name:'长春'}],
  139. [{name:'上海'},{name:'重庆'}],
  140. [{name:'上海'},{name:'长沙'}],
  141. [{name:'上海'},{name:'成都'}],
  142. [{name:'上海'},{name:'丹东'}],
  143. [{name:'上海'},{name:'大连'}],
  144. [{name:'上海'},{name:'福州'}],
  145. [{name:'上海'},{name:'海口'}],
  146. [{name:'上海'},{name:'呼和浩特'}],
  147. [{name:'上海'},{name:'合肥'}],
  148. [{name:'上海'},{name:'哈尔滨'}],
  149. [{name:'上海'},{name:'舟山'}],
  150. [{name:'上海'},{name:'银川'}],
  151. [{name:'上海'},{name:'南昌'}],
  152. [{name:'上海'},{name:'昆明'}],
  153. [{name:'上海'},{name:'贵阳'}],
  154. [{name:'上海'},{name:'兰州'}],
  155. [{name:'上海'},{name:'拉萨'}],
  156. [{name:'上海'},{name:'连云港'}],
  157. [{name:'上海'},{name:'临沂'}],
  158. [{name:'上海'},{name:'柳州'}],
  159. [{name:'上海'},{name:'宁波'}],
  160. [{name:'上海'},{name:'南宁'}],
  161. [{name:'上海'},{name:'北京'}],
  162. [{name:'上海'},{name:'沈阳'}],
  163. [{name:'上海'},{name:'秦皇岛'}],
  164. [{name:'上海'},{name:'西安'}],
  165. [{name:'上海'},{name:'石家庄'}],
  166. [{name:'上海'},{name:'汕头'}],
  167. [{name:'上海'},{name:'深圳'}],
  168. [{name:'上海'},{name:'青岛'}],
  169. [{name:'上海'},{name:'济南'}],
  170. [{name:'上海'},{name:'天津'}],
  171. [{name:'上海'},{name:'太原'}],
  172. [{name:'上海'},{name:'乌鲁木齐'}],
  173. [{name:'上海'},{name:'潍坊'}],
  174. [{name:'上海'},{name:'威海'}],
  175. [{name:'上海'},{name:'温州'}],
  176. [{name:'上海'},{name:'武汉'}],
  177. [{name:'上海'},{name:'厦门'}],
  178. [{name:'上海'},{name:'西宁'}],
  179. [{name:'上海'},{name:'徐州'}],
  180. [{name:'上海'},{name:'烟台'}],
  181. [{name:'上海'},{name:'珠海'}],
  182. [{name:'广州'},{name:'北海'}],
  183. [{name:'广州'},{name:'郑州'}],
  184. [{name:'广州'},{name:'长春'}],
  185. [{name:'广州'},{name:'重庆'}],
  186. [{name:'广州'},{name:'长沙'}],
  187. [{name:'广州'},{name:'成都'}],
  188. [{name:'广州'},{name:'常州'}],
  189. [{name:'广州'},{name:'大连'}],
  190. [{name:'广州'},{name:'福州'}],
  191. [{name:'广州'},{name:'海口'}],
  192. [{name:'广州'},{name:'呼和浩特'}],
  193. [{name:'广州'},{name:'合肥'}],
  194. [{name:'广州'},{name:'杭州'}],
  195. [{name:'广州'},{name:'哈尔滨'}],
  196. [{name:'广州'},{name:'舟山'}],
  197. [{name:'广州'},{name:'银川'}],
  198. [{name:'广州'},{name:'南昌'}],
  199. [{name:'广州'},{name:'昆明'}],
  200. [{name:'广州'},{name:'贵阳'}],
  201. [{name:'广州'},{name:'兰州'}],
  202. [{name:'广州'},{name:'拉萨'}],
  203. [{name:'广州'},{name:'连云港'}],
  204. [{name:'广州'},{name:'临沂'}],
  205. [{name:'广州'},{name:'柳州'}],
  206. [{name:'广州'},{name:'宁波'}],
  207. [{name:'广州'},{name:'南京'}],
  208. [{name:'广州'},{name:'南宁'}],
  209. [{name:'广州'},{name:'南通'}],
  210. [{name:'广州'},{name:'北京'}],
  211. [{name:'广州'},{name:'上海'}],
  212. [{name:'广州'},{name:'沈阳'}],
  213. [{name:'广州'},{name:'西安'}],
  214. [{name:'广州'},{name:'石家庄'}],
  215. [{name:'广州'},{name:'汕头'}],
  216. [{name:'广州'},{name:'青岛'}],
  217. [{name:'广州'},{name:'济南'}],
  218. [{name:'广州'},{name:'天津'}],
  219. [{name:'广州'},{name:'太原'}],
  220. [{name:'广州'},{name:'乌鲁木齐'}],
  221. [{name:'广州'},{name:'温州'}],
  222. [{name:'广州'},{name:'武汉'}],
  223. [{name:'广州'},{name:'无锡'}],
  224. [{name:'广州'},{name:'厦门'}],
  225. [{name:'广州'},{name:'西宁'}],
  226. [{name:'广州'},{name:'徐州'}],
  227. [{name:'广州'},{name:'烟台'}],
  228. [{name:'广州'},{name:'盐城'}]
  229. ],
  230. },
  231. geoCoord: {
  232. '上海': [121.4648,31.2891],
  233. '东莞': [113.8953,22.901],
  234. '东营': [118.7073,37.5513],
  235. '中山': [113.4229,22.478],
  236. '临汾': [111.4783,36.1615],
  237. '临沂': [118.3118,35.2936],
  238. '丹东': [124.541,40.4242],
  239. '丽水': [119.5642,28.1854],
  240. '乌鲁木齐': [87.9236,43.5883],
  241. '佛山': [112.8955,23.1097],
  242. '保定': [115.0488,39.0948],
  243. '兰州': [103.5901,36.3043],
  244. '包头': [110.3467,41.4899],
  245. '北京': [116.4551,40.2539],
  246. '北海': [109.314,21.6211],
  247. '南京': [118.8062,31.9208],
  248. '南宁': [108.479,23.1152],
  249. '南昌': [116.0046,28.6633],
  250. '南通': [121.1023,32.1625],
  251. '厦门': [118.1689,24.6478],
  252. '台州': [121.1353,28.6688],
  253. '合肥': [117.29,32.0581],
  254. '呼和浩特': [111.4124,40.4901],
  255. '咸阳': [108.4131,34.8706],
  256. '哈尔滨': [127.9688,45.368],
  257. '唐山': [118.4766,39.6826],
  258. '嘉兴': [120.9155,30.6354],
  259. '大同': [113.7854,39.8035],
  260. '大连': [122.2229,39.4409],
  261. '天津': [117.4219,39.4189],
  262. '太原': [112.3352,37.9413],
  263. '威海': [121.9482,37.1393],
  264. '宁波': [121.5967,29.6466],
  265. '宝鸡': [107.1826,34.3433],
  266. '宿迁': [118.5535,33.7775],
  267. '常州': [119.4543,31.5582],
  268. '广州': [113.5107,23.2196],
  269. '廊坊': [116.521,39.0509],
  270. '延安': [109.1052,36.4252],
  271. '张家口': [115.1477,40.8527],
  272. '徐州': [117.5208,34.3268],
  273. '德州': [116.6858,37.2107],
  274. '惠州': [114.6204,23.1647],
  275. '成都': [103.9526,30.7617],
  276. '扬州': [119.4653,32.8162],
  277. '承德': [117.5757,41.4075],
  278. '拉萨': [91.1865,30.1465],
  279. '无锡': [120.3442,31.5527],
  280. '日照': [119.2786,35.5023],
  281. '昆明': [102.9199,25.4663],
  282. '杭州': [119.5313,29.8773],
  283. '枣庄': [117.323,34.8926],
  284. '柳州': [109.3799,24.9774],
  285. '株洲': [113.5327,27.0319],
  286. '武汉': [114.3896,30.6628],
  287. '汕头': [117.1692,23.3405],
  288. '江门': [112.6318,22.1484],
  289. '沈阳': [123.1238,42.1216],
  290. '沧州': [116.8286,38.2104],
  291. '河源': [114.917,23.9722],
  292. '泉州': [118.3228,25.1147],
  293. '泰安': [117.0264,36.0516],
  294. '泰州': [120.0586,32.5525],
  295. '济南': [117.1582,36.8701],
  296. '济宁': [116.8286,35.3375],
  297. '海口': [110.3893,19.8516],
  298. '淄博': [118.0371,36.6064],
  299. '淮安': [118.927,33.4039],
  300. '深圳': [114.5435,22.5439],
  301. '清远': [112.9175,24.3292],
  302. '温州': [120.498,27.8119],
  303. '渭南': [109.7864,35.0299],
  304. '湖州': [119.8608,30.7782],
  305. '湘潭': [112.5439,27.7075],
  306. '滨州': [117.8174,37.4963],
  307. '潍坊': [119.0918,36.524],
  308. '烟台': [120.7397,37.5128],
  309. '玉溪': [101.9312,23.8898],
  310. '珠海': [113.7305,22.1155],
  311. '盐城': [120.2234,33.5577],
  312. '盘锦': [121.9482,41.0449],
  313. '石家庄': [114.4995,38.1006],
  314. '福州': [119.4543,25.9222],
  315. '秦皇岛': [119.2126,40.0232],
  316. '绍兴': [120.564,29.7565],
  317. '聊城': [115.9167,36.4032],
  318. '肇庆': [112.1265,23.5822],
  319. '舟山': [122.2559,30.2234],
  320. '苏州': [120.6519,31.3989],
  321. '莱芜': [117.6526,36.2714],
  322. '菏泽': [115.6201,35.2057],
  323. '营口': [122.4316,40.4297],
  324. '葫芦岛': [120.1575,40.578],
  325. '衡水': [115.8838,37.7161],
  326. '衢州': [118.6853,28.8666],
  327. '西宁': [101.4038,36.8207],
  328. '西安': [109.1162,34.2004],
  329. '贵阳': [106.6992,26.7682],
  330. '连云港': [119.1248,34.552],
  331. '邢台': [114.8071,37.2821],
  332. '邯郸': [114.4775,36.535],
  333. '郑州': [113.4668,34.6234],
  334. '鄂尔多斯': [108.9734,39.2487],
  335. '重庆': [107.7539,30.1904],
  336. '金华': [120.0037,29.1028],
  337. '铜川': [109.0393,35.1947],
  338. '银川': [106.3586,38.1775],
  339. '镇江': [119.4763,31.9702],
  340. '长春': [125.8154,44.2584],
  341. '长沙': [113.0823,28.2568],
  342. '长治': [112.8625,36.4746],
  343. '阳泉': [113.4778,38.0951],
  344. '青岛': [120.4651,36.3373],
  345. '韶关': [113.7964,24.7028]
  346. }
  347. },
  348. {
  349. name: '北京 Top10',
  350. type: 'map',
  351. mapType: 'china',
  352. data:[],
  353. markLine : {
  354. smooth:true,
  355. effect : {
  356. show: true,
  357. scaleSize: 1,
  358. period: 30,
  359. color: '#fff',
  360. shadowBlur: 10
  361. },
  362. itemStyle : {
  363. normal: {
  364. borderWidth:1,
  365. lineStyle: {
  366. type: 'solid',
  367. shadowBlur: 10
  368. }
  369. }
  370. },
  371. data : [
  372. [{name:'北京'}, {name:'上海',value:95}],
  373. [{name:'北京'}, {name:'广州',value:90}],
  374. [{name:'北京'}, {name:'大连',value:80}],
  375. [{name:'北京'}, {name:'南宁',value:70}],
  376. [{name:'北京'}, {name:'南昌',value:60}],
  377. [{name:'北京'}, {name:'拉萨',value:50}],
  378. [{name:'北京'}, {name:'长春',value:40}],
  379. [{name:'北京'}, {name:'包头',value:30}],
  380. [{name:'北京'}, {name:'重庆',value:20}],
  381. [{name:'北京'}, {name:'常州',value:10}]
  382. ]
  383. },
  384. markPoint : {
  385. symbol:'emptyCircle',
  386. symbolSize : function (v){
  387. return 10 + v/10
  388. },
  389. effect : {
  390. show: true,
  391. shadowBlur : 0
  392. },
  393. itemStyle:{
  394. normal:{
  395. label:{show:false}
  396. },
  397. emphasis: {
  398. label:{position:'top'}
  399. }
  400. },
  401. data : [
  402. {name:'上海',value:95},
  403. {name:'广州',value:90},
  404. {name:'大连',value:80},
  405. {name:'南宁',value:70},
  406. {name:'南昌',value:60},
  407. {name:'拉萨',value:50},
  408. {name:'长春',value:40},
  409. {name:'包头',value:30},
  410. {name:'重庆',value:20},
  411. {name:'常州',value:10}
  412. ]
  413. }
  414. },
  415. {
  416. name: '上海 Top10',
  417. type: 'map',
  418. mapType: 'china',
  419. data:[],
  420. markLine : {
  421. smooth:true,
  422. effect : {
  423. show: true,
  424. scaleSize: 1,
  425. period: 30,
  426. color: '#fff',
  427. shadowBlur: 10
  428. },
  429. itemStyle : {
  430. normal: {
  431. borderWidth:1,
  432. lineStyle: {
  433. type: 'solid',
  434. shadowBlur: 10
  435. }
  436. }
  437. },
  438. data : [
  439. [{name:'上海'},{name:'包头',value:95}],
  440. [{name:'上海'},{name:'昆明',value:90}],
  441. [{name:'上海'},{name:'广州',value:80}],
  442. [{name:'上海'},{name:'郑州',value:70}],
  443. [{name:'上海'},{name:'长春',value:60}],
  444. [{name:'上海'},{name:'重庆',value:50}],
  445. [{name:'上海'},{name:'长沙',value:40}],
  446. [{name:'上海'},{name:'北京',value:30}],
  447. [{name:'上海'},{name:'丹东',value:20}],
  448. [{name:'上海'},{name:'大连',value:10}]
  449. ]
  450. },
  451. markPoint : {
  452. symbol:'emptyCircle',
  453. symbolSize : function (v){
  454. return 10 + v/10
  455. },
  456. effect : {
  457. show: true,
  458. shadowBlur : 0
  459. },
  460. itemStyle:{
  461. normal:{
  462. label:{show:false}
  463. },
  464. emphasis: {
  465. label:{position:'top'}
  466. }
  467. },
  468. data : [
  469. {name:'包头',value:95},
  470. {name:'昆明',value:90},
  471. {name:'广州',value:80},
  472. {name:'郑州',value:70},
  473. {name:'长春',value:60},
  474. {name:'重庆',value:50},
  475. {name:'长沙',value:40},
  476. {name:'北京',value:30},
  477. {name:'丹东',value:20},
  478. {name:'大连',value:10}
  479. ]
  480. }
  481. },
  482. {
  483. name: '广州 Top10',
  484. type: 'map',
  485. mapType: 'china',
  486. data:[],
  487. markLine : {
  488. smooth:true,
  489. effect : {
  490. show: true,
  491. scaleSize: 1,
  492. period: 30,
  493. color: '#fff',
  494. shadowBlur: 10
  495. },
  496. itemStyle : {
  497. normal: {
  498. borderWidth:1,
  499. lineStyle: {
  500. type: 'solid',
  501. shadowBlur: 10
  502. }
  503. }
  504. },
  505. data : [
  506. [{name:'广州'},{name:'福州',value:95}],
  507. [{name:'广州'},{name:'太原',value:90}],
  508. [{name:'广州'},{name:'长春',value:80}],
  509. [{name:'广州'},{name:'重庆',value:70}],
  510. [{name:'广州'},{name:'西安',value:60}],
  511. [{name:'广州'},{name:'成都',value:50}],
  512. [{name:'广州'},{name:'常州',value:40}],
  513. [{name:'广州'},{name:'北京',value:30}],
  514. [{name:'广州'},{name:'北海',value:20}],
  515. [{name:'广州'},{name:'海口',value:10}]
  516. ]
  517. },
  518. markPoint : {
  519. symbol:'emptyCircle',
  520. symbolSize : function (v){
  521. return 10 + v/10
  522. },
  523. effect : {
  524. show: true,
  525. shadowBlur : 0
  526. },
  527. itemStyle:{
  528. normal:{
  529. label:{show:false}
  530. },
  531. emphasis: {
  532. label:{position:'top'}
  533. }
  534. },
  535. data : [
  536. {name:'福州',value:95},
  537. {name:'太原',value:90},
  538. {name:'长春',value:80},
  539. {name:'重庆',value:70},
  540. {name:'西安',value:60},
  541. {name:'成都',value:50},
  542. {name:'常州',value:40},
  543. {name:'北京',value:30},
  544. {name:'北海',value:20},
  545. {name:'海口',value:10}
  546. ]
  547. }
  548. }
  549. ]
  550. };

  

aa12的更多相关文章

  1. ZedBoard 引脚约束参考

    从ISE转换到Vivado时,UCF转XDC的几种方法: (1)软件自动转换 参考网址:Youtube 用ISE->EDK->PlanAhead打开所需转换的工程文件*.xise,并打开b ...

  2. FPGA---ucf文件编写

    摘要:本文主要通过一个实例具体介绍ISE中通过编辑UCF文件来对FPGA设计进行约束,主要涉及到的约束包括时钟约束.群组约束.逻辑管脚约束以及物理属性约束. Xilinx FPGA设计约束的分类 Xi ...

  3. php简简单单搞定中英文混排字符串截取,只需2行代码!

    提到中英文混排计数.截取,大家首先想到的是ascii.16进制.正则匹配.循环计数. 今天我给大家分享的是php的mb扩展,教你如何轻松处理字符串. 先给大家介绍用到的函数: mb_strwidth( ...

  4. shell学习笔记

    shell学习笔记 .查看/etc/shells,看看有几个可用的Shell . 曾经用过的命令存在.bash_history中,但是~/.bash_history记录的是前一次登录前记录的所有指令, ...

  5. SqlDataAdapter.Update批量数据更新

    SqlDataAdapter.Update批量数据更新 使用SqlDataAdapter.Update可以方便地对数据库进行快速.批量数据更新.我们最常用的多条数据更新方法是使用循环多次执行SQL语句 ...

  6. Xilinx Vivado的使用详细介绍(5):调用用户自定义封装的IP核

    Zedboard OLED Display Controller IP v1 介绍 Author:zhangxianhe 本文档提供了快速添加,连接和使用ZedboardOLED v1.0 IP内核的 ...

  7. angular-repeat

    ng-repeat="name in 变量名字 track by $index" 一个数组的时候ng-repeat="name in 变量名字" {{x.nam ...

  8. 使用Vivado初探ZedBoard的OLED驱动

    一.原理简介 Vivado版本:2016.2 OLED型号:128*32的UG-2832HSWEG04 ZedBoard的OLED部分电路原理图如下:(需要我们关心的是我用红色椭圆标注出来的3处,一共 ...

  9. javascript反混淆之packed混淆(二)

    上次我们简单的入门下怎么使用html破解packed的混淆,下面看一个综合案例. 上次内容javascript反混淆之packed混淆(一) function getKey() { var aaaaf ...

随机推荐

  1. MySQL临时表创建

    和SQL SERVER 创建临时表不同 不能直接写 Create table #Test_Table 而是需要在 Create 和 table 之间 加入 TEMPORARY(temporary< ...

  2. JS splice() 定义和用法

    定义和用法 splice() 方法向/从数组中添加/删除项目,然后返回被删除的项目. 注释:该方法会改变原始数组. 语法 arrayObject.splice(index,howmany,item1, ...

  3. Managing IIS Log File Storage

    Managing IIS Log File Storage   You can manage the amount of server disk space that Internet Informa ...

  4. [vivado系列]Vivado软件的下载

    时间:2016.10.27 ------------------ 前言:我们知道vivado软件是用于xilinx的7系列及以上器件的FPGA开发工具. 随着版本的不断更新,也变得越来越庞大.臃肿! ...

  5. 最简单的JS图片轮播

    var arr=new Array(); arr[1]="";//放图片地址 arr[2]=""; arr[3]=""; var no=0; ...

  6. 需要交互的shell编程——EOF(转载)

    在shell编程中,”EOF“通常与”<<“结合使用,“<<EOF“表示后续的输入作为子命令或子shell的输入,直到遇到”EOF“, 再次返回到主调shell,可将其理解为分 ...

  7. NFC学习 (1)

    NFC Smart Poster: 放入NFC TAG的都是Smart Poster Advantage:  1.在展示动态内容方面有低功耗的优势: 2.容易扩展容量: 3.容易修改内容(修改后台或者 ...

  8. DIOCP之DEMO-Echo卡死问题分析

    最近很多新朋友在调试echo这个例程时发现,总是卡死客户端或服务器端,这是因为客户端的接收数据用的memo没有处理接受到的行数,导致超过最大行数,而卡死界面,只需要如下操作就可以解决: 引用弦子的:虽 ...

  9. form表单reset表格并执行搜索

    其中reset() 不需要定义 search():是你执行的搜索的函数 <html> <head> <title>sf</title></head ...

  10. 初学c# -- 学习笔记(一)

    初学c# -- 学习笔记(一) 学习C#了,参考许多资料,一步步学习.这一段学习ajax的工作原理,参照其他例子写了web版的群聊小程序,全部文件代码也就不到300行,很简单.使用时先输入用户名,点确 ...