Taxi Cab Scheme

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 231    Accepted Submission(s): 142

Problem Description
Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible, there is also a need to schedule all the taxi rides which have been booked in advance. Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides.

For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a − c| + |b − d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest , at least one minute before the new ride’s scheduled departure. Note that some rides may end after midnight.

 
Input
On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time.
 
Output
For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.
 
Sample Input
2
2
08:00 10 11 9 16
08:07 9 16 10 11
2
08:00 10 11 9 16
08:06 9 16 10 11
 
Sample Output
1
2
 
题意:就是用少的出租车接送所有的预定的客人 距离时间公式已经给好了 
最小路径覆盖问题 具体自己去学习匈牙利算法就好了 这道题几乎是匈牙利算法的裸题 DFS实现 最小路径覆盖数 = 顶点数 - 最大匹配数
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const int maxn = + ;
vector<int> gra[maxn];
struct Point{
int x, y;
};
struct Node{
int st, en;
Point p1, p2;
}node[maxn];
bool mark[maxn];
int xx[maxn], yy[maxn];
int m; inline int getTime(Point a, Point b);
int dfs(int u);
int maxMatch(); int main(){
int t;
scanf("%d", &t);
while(t--){
scanf("%d", &m);
for(int i = ; i <= m; ++i){
gra[i].clear();
} int hour, mi;
for(int i = ; i <= m; ++i){
scanf("%d:%d %d %d %d %d", &hour, &mi, &node[i].p1.x, &node[i].p1.y, &node[i].p2.x, &node[i].p2.y);
node[i].st = hour * + mi;
node[i].en = node[i].st + getTime(node[i].p1, node[i].p2);
} for(int i = ; i <= m; ++i){
for(int j = i+; j <= m; ++j){
if(node[i].en + getTime(node[i].p2, node[j].p1) < node[j].st){
gra[i].push_back(j);
}
}
} int ans = maxMatch();
printf("%d\n", m-ans);
}
return ;
} inline int getTime(Point a, Point b){
return abs(a.x-b.x) + abs(a.y-b.y);
} int maxMatch(){
int res = ;
memset(xx, -, sizeof(xx));
memset(yy, -, sizeof(yy)); for(int i = ; i <= m; ++i){
if(xx[i] == -){
memset(mark, false, sizeof(mark));
res += dfs(i);
}
} return res;
} int dfs(int u){
for(int i = ; i < (int)gra[u].size(); ++i){
int v = gra[u][i];
if(!mark[v]){
mark[v] = true;
if(yy[v] == - || dfs(yy[v])){
yy[v] = u;
xx[u] = v;
return ;
}
}
}
return ;
}

【HDU1960】Taxi Cab Scheme(最小路径覆盖)的更多相关文章

  1. poj 2060 Taxi Cab Scheme (最小路径覆盖)

    http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submi ...

  2. UVaLive 3126 Taxi Cab Scheme (最小路径覆盖)

    题意:有 n 个客人,要从 si 到 ti,每个人有一个出发时间,现在让你安排最少和出租车去接,在接客人时至少要提前一分钟到达客人的出发地点. 析:把每个客人看成一个结点,然后如果用同一个出租车接的话 ...

  3. UVALive3126 Taxi Cab Scheme —— 最小路径覆盖

    题目链接:https://vjudge.net/problem/UVALive-3126 题解: 最小路径覆盖:即在图中找出尽量少的路径,使得每个结点恰好只存在于一条路径上.其中单独一个点也可以是一条 ...

  4. hdu1350Taxi Cab Scheme (最小路径覆盖)

    Taxi Cab Scheme Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  5. 二分图最小路径覆盖--poj2060 Taxi Cab Scheme

    Taxi Cab Scheme 时间限制: 1 Sec  内存限制: 64 MB 题目描述 Running a taxi station is not all that simple. Apart f ...

  6. Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配

    /** 题目:Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配 链接:https://vjudge.net/proble ...

  7. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  8. Taxi Cab Scheme POJ - 2060 二分图最小路径覆盖

    Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coord ...

  9. UVAlive3126 Taxi Cab Scheme(DAG的最小路径覆盖)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32568 [思路] DAG的最小路径覆盖. 将每个人看做一个结点,如 ...

随机推荐

  1. c# 字符串操作

    一.字符串操作 //字符串转数组 string mystring="this is a string" char[] mychars=mystring.ToCharArray(); ...

  2. JAVA时间格式转换大全

    import java.text.*; import java.util.Calendar; public class VeDate { /** * 获取现在时间 * * @return 返回时间类型 ...

  3. Three.js入门

    一.前段时候花了些功夫研究了下WebGL,了解了基本实体的实现原理和实现方法,现在回忆就只记得如果要我画个圆形,怀疑都要了我的命(那得画多少个三角形...).功夫不负有心人,今天学习Three.js得 ...

  4. logistc regression练习(三)

    % Exercise 4 -- Logistic Regression clear all; close all; clc x = load('E:\workstation\data\ex4x.dat ...

  5. jbox用法

    详见  http://www.jjsp.gov.cn:8888/js/jbox-v2.3/jbox-demo2.html

  6. 用css实现条纹背景

    我先额外的说一下怎么用CSS绘制三角形: 绘制三角形是把边框加粗,将元素的宽高都设为0,让其余的边框颜色透明,下面我们来看实现的代码: 先把边框的颜色设置成不同颜色: #div{ border-col ...

  7. Android系统启动过程

    首先Android框架架构图: Linux内核启动之后就到Android Init进程,进而启动Android相关的服务和应用. 启动的过程如下图所示:(图片来自网上,后面有地址)   下面将从And ...

  8. Android ——单元测试

    什么是单元测试 首先需要介绍一下什么是单元测试.很多人像我一样,本科并不是计算机专业出身的,如果在职的公司不要求做单元测试的话,可能对这个词并没有一个确切的概念.而即使是计算机专业出身,如果毕业以后写 ...

  9. gulp(一)

    简介: gulp是前端开发过程中对代码进行构建的工具,是自动化项目的构建利器:她不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的工具自动完成:使用她,我们不仅可以很愉快的编写代码 ...

  10. Bash . configure permission denied错误

    当你在Linux(我这里是Ubuntu10.04LTS Desktop)下编译安装某个包的时候,你首先是进入到解压目录然后执行“$ ./configure”的,但是有时候你会发现提示错误,错误提示是这 ...