Taxi Cab Scheme

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 231    Accepted Submission(s): 142

Problem Description
Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible, there is also a need to schedule all the taxi rides which have been booked in advance. Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides.

For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a − c| + |b − d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest , at least one minute before the new ride’s scheduled departure. Note that some rides may end after midnight.

 
Input
On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time.
 
Output
For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.
 
Sample Input
2
2
08:00 10 11 9 16
08:07 9 16 10 11
2
08:00 10 11 9 16
08:06 9 16 10 11
 
Sample Output
1
2
 
题意:就是用少的出租车接送所有的预定的客人 距离时间公式已经给好了 
最小路径覆盖问题 具体自己去学习匈牙利算法就好了 这道题几乎是匈牙利算法的裸题 DFS实现 最小路径覆盖数 = 顶点数 - 最大匹配数
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const int maxn = + ;
vector<int> gra[maxn];
struct Point{
int x, y;
};
struct Node{
int st, en;
Point p1, p2;
}node[maxn];
bool mark[maxn];
int xx[maxn], yy[maxn];
int m; inline int getTime(Point a, Point b);
int dfs(int u);
int maxMatch(); int main(){
int t;
scanf("%d", &t);
while(t--){
scanf("%d", &m);
for(int i = ; i <= m; ++i){
gra[i].clear();
} int hour, mi;
for(int i = ; i <= m; ++i){
scanf("%d:%d %d %d %d %d", &hour, &mi, &node[i].p1.x, &node[i].p1.y, &node[i].p2.x, &node[i].p2.y);
node[i].st = hour * + mi;
node[i].en = node[i].st + getTime(node[i].p1, node[i].p2);
} for(int i = ; i <= m; ++i){
for(int j = i+; j <= m; ++j){
if(node[i].en + getTime(node[i].p2, node[j].p1) < node[j].st){
gra[i].push_back(j);
}
}
} int ans = maxMatch();
printf("%d\n", m-ans);
}
return ;
} inline int getTime(Point a, Point b){
return abs(a.x-b.x) + abs(a.y-b.y);
} int maxMatch(){
int res = ;
memset(xx, -, sizeof(xx));
memset(yy, -, sizeof(yy)); for(int i = ; i <= m; ++i){
if(xx[i] == -){
memset(mark, false, sizeof(mark));
res += dfs(i);
}
} return res;
} int dfs(int u){
for(int i = ; i < (int)gra[u].size(); ++i){
int v = gra[u][i];
if(!mark[v]){
mark[v] = true;
if(yy[v] == - || dfs(yy[v])){
yy[v] = u;
xx[u] = v;
return ;
}
}
}
return ;
}

【HDU1960】Taxi Cab Scheme(最小路径覆盖)的更多相关文章

  1. poj 2060 Taxi Cab Scheme (最小路径覆盖)

    http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submi ...

  2. UVaLive 3126 Taxi Cab Scheme (最小路径覆盖)

    题意:有 n 个客人,要从 si 到 ti,每个人有一个出发时间,现在让你安排最少和出租车去接,在接客人时至少要提前一分钟到达客人的出发地点. 析:把每个客人看成一个结点,然后如果用同一个出租车接的话 ...

  3. UVALive3126 Taxi Cab Scheme —— 最小路径覆盖

    题目链接:https://vjudge.net/problem/UVALive-3126 题解: 最小路径覆盖:即在图中找出尽量少的路径,使得每个结点恰好只存在于一条路径上.其中单独一个点也可以是一条 ...

  4. hdu1350Taxi Cab Scheme (最小路径覆盖)

    Taxi Cab Scheme Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  5. 二分图最小路径覆盖--poj2060 Taxi Cab Scheme

    Taxi Cab Scheme 时间限制: 1 Sec  内存限制: 64 MB 题目描述 Running a taxi station is not all that simple. Apart f ...

  6. Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配

    /** 题目:Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配 链接:https://vjudge.net/proble ...

  7. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  8. Taxi Cab Scheme POJ - 2060 二分图最小路径覆盖

    Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coord ...

  9. UVAlive3126 Taxi Cab Scheme(DAG的最小路径覆盖)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32568 [思路] DAG的最小路径覆盖. 将每个人看做一个结点,如 ...

随机推荐

  1. 使用javaScript实现简单倒计时功能

    效果如下: <div class="warp"> <p id="txt">距离”十一“国庆放假还有:</p><br&g ...

  2. wp8开发笔记之开发环境的搭建

    开发工具的下载: Windows phone sdk 8.0下载地址: http://www.microsoft.com/ZH-CN/download/details.aspx?id=35471 开发 ...

  3. 存储过程详解与java调用(转)

    存储过程的一些基本语法: --------------创建存储过程----------------- CREATE PROC [ EDURE ] procedure_name [ ; number ] ...

  4. 使用PHPExcel导出文件

    使用PHPExcel导出文件步骤及解析: 新建一个excel表格:实例化PHPExcel类 创建sheet(内置表):createSheet()方法,创建新的sheet方法 setActiveShee ...

  5. 【C】二级指针探秘 & 星号的两种用法(1.与基本类型结合形成另一种类型,比如与int结合形成int* 2.取值操作)

    1)问题:二级指针到底是什么?怎么用的?怎么存放的? #include <stdio.h> #define TEST_ADDR 0x12FF40 void main() { int a = ...

  6. Java SCP copy local file to remote implementation

    最近做的项目中,有一个小需求,需要通过SCP把本地文件copy到远程服务器.查了好多资料,最终解决方案简单快速,分享一下. 在这里,需要用到4个jar包,分别是ant-jsch.jar,ant-lau ...

  7. Android斗地主棋牌游戏牌桌实现源码下载

    本次给大家分享下Android斗地主棋牌游戏牌桌实现源码下载如下: 为了节约内存资源,每张扑克牌都是剪切形成的,当然这也是当前编程的主流方法. 1.主Activity package com.biso ...

  8. linux通过端口号查找程序执行路径

    第一种: 查看ssh服务 [root@localhost shell]# netstat -anlp | grep :22tcp        0      0 0.0.0.0:22          ...

  9. 可编辑的div元素去除粘贴复制带来的额外样式,实现纯文本粘贴

    $(function(){ var update = function(original){   var new_content = $('.testmr').html();      var new ...

  10. dom扩展

    第十一章 DOM扩展 一.选择符API 1.querySelector()方法             接收一个CSS选择符,返回与该模式匹配的第一个元素,如果没有找到匹配的元素,返回null. 2. ...