【搜索】POJ-3009 DFS+回溯
一、题目
Description
On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.
Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.


Fig. 1: Example of board (S: start, G: goal)
The movement of the stone obeys the following rules:
- At the beginning, the stone stands still at the start square.
- The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
- When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
- Once thrown, the stone keeps moving to the same direction until one of the following occurs:
- The stone hits a block (Fig. 2(b), (c)).
- The stone stops at the square next to the block it hit.
- The block disappears.
- The stone gets out of the board.
- The game ends in failure.
- The stone reaches the goal square.
- The stone stops there and the game ends in success.
- The stone hits a block (Fig. 2(b), (c)).
- You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.


Fig. 2: Stone movements
Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.
With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).


Fig. 3: The solution for Fig. D-1 and the final board configuration
Input
The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.
Each dataset is formatted as follows.
the width(=w) and the height(=h) of the board
the width(=w) and the height(=h) of the board
First row of the boardthe width(=w) and the height(=h) of the board
First row of the board
...the width(=w) and the height(=h) of the board
First row of the board
...
h-th row of the board
The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.
Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.
0 vacant square 1 block 2 start position 3 goal position
The dataset for Fig. D-1 is as follows:
6 6
6 6
1 0 0 2 1 06 6
1 0 0 2 1 0
1 1 0 0 0 06 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 36 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 06 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 16 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
Output
For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.
Sample Input
2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0
Sample Output
1
4
-1
4
10
-1
二、思路&心得
利用深度搜索、回溯以及剪枝算法进行搜索
算法编写时应注意:终止条件的判定、资源的还原(清空)以及相应的终止命令(return、break)
三、代码
#include<stdio.h>
#define VACANT 0
#define BLOCK 1
#define START 2
#define GOAL 3
#define MAX_TIMES 11
int W, H;
int sx, sy, gx, gy;
int min, step;
int map[25][25];
int dirction[4][2] = {0, -1, -1, 0, 0, 1, 1, 0};
void dfs(int x, int y) {
if (step > 10 || step >= min) return;
for (int i = 0; i < 4; i ++) {
int tx = x, ty = y;
while (1) {
int px = tx, py = ty;
tx += dirction[i][0], ty+= dirction[i][1];
if (tx < 0 || tx >= H || ty < 0 || ty >= W) break;
if (tx == gx && ty == gy) {
step ++;
if (step < min) min = step;
step --;
return;
} else if (map[tx][ty] == BLOCK) {
if (px != x || py != y) {
map[tx][ty] = VACANT;
step ++;
dfs(px, py);
map[tx][ty] = BLOCK;
step --;
}
break;
}
}
}
}
void solve() {
min = MAX_TIMES;
step = 0;
for (int i = 0; i < H; i ++) {
for (int j = 0; j < W; j ++) {
scanf("%d", &map[i][j]);
if (map[i][j] == START) {
sx = i, sy = j;
} else if (map[i][j] == GOAL) {
gx = i, gy = j;
}
}
}
dfs(sx, sy);
if (min == MAX_TIMES) printf("-1\n");
else printf("%d\n", min);
}
int main() {
while(scanf("%d %d", &W, &H)) {
if (!W && !H) break;
solve();
}
return 0;
}
【搜索】POJ-3009 DFS+回溯的更多相关文章
- POJ 3414 dfs 回溯
题目链接:http://poj.org/problem?id=3414 题意:三个值A, B, C, A和B是两个杯子的容量,问最短操作数使A或者B里的水量是C.有三种操作. 思路:dfs.暴力 很简 ...
- POJ 3009 DFS+剪枝
POJ3009 DFS+剪枝 原题: Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16280 Acce ...
- POJ 3009 Curling 2.0【带回溯DFS】
POJ 3009 题意: 给出一个w*h的地图,其中0代表空地,1代表障碍物,2代表起点,3代表终点,每次行动可以走多个方格,每次只能向附近一格不是障碍物的方向行动,直到碰到障碍物才停下来,此时障碍物 ...
- 【POJ - 3009】Curling 2.0 (dfs+回溯)
-->Curling 2.0 直接上中文 Descriptions: 今年的奥运会之后,在行星mm-21上冰壶越来越受欢迎.但是规则和我们的有点不同.这个游戏是在一个冰游戏板上玩的,上面有一个正 ...
- [LeetCode] 79. 单词搜索(DFS,回溯)
题目 给定一个二维网格和一个单词,找出该单词是否存在于网格中. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中"相邻"单元格是那些水平相邻或垂直相邻的单元格.同一个单元格 ...
- 【原创】poj ----- 3009 curling 2 解题报告
题目地址: http://poj.org/problem?id=3009 题目内容: Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Tot ...
- NOJ 1074 Hey Judge(DFS回溯)
Problem 1074: Hey Judge Time Limits: 1000 MS Memory Limits: 65536 KB 64-bit interger IO format: ...
- HDU 1016 Prime Ring Problem(经典DFS+回溯)
Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 2181 哈密顿绕行世界问题(经典DFS+回溯)
哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
随机推荐
- 文本处理三剑客之 awk
GAWK:报告生成器,格式化文本输出 awk [options] ‘program’ var=value file… awk [options] -f programfile var=value fi ...
- Verdi调用VCS进行交互式仿真
前一篇介绍了使用Verdi的后处理模式查看仿真波形进行调试,此外Verdi还支持交互模式,可以调用外部仿真器,下面介绍Verdi调用VCS进行交互模式仿真的方法.注意,这里介绍的方法需要2016版的V ...
- POJ 1235 Machine Schedule 【二分图】
这道题考察对最小点覆盖的理解. 做法: 对于一个作业,它需要A的a模式和B的b模式,那么可以从a模式向b模式连一条边:可以感性的理解为每一条边就是一个作业,需要求得有多少个模式可以覆盖所有的边,也就是 ...
- Java基础—IO小结(一)概述与节点流
一.File类的使用 由于file类是一个基础类,所以我们从file类开始了解.(SE有完善的中文文档,建议阅读) 构造器: 常用方法:——完整方法请参见API API API!!! File做的是 ...
- 20155214 2016-2017-2 《Java程序设计》第10周学习总结
学号 2016-2017-2 <Java程序设计>第10周学习总结 教材学习内容总结 掌握Java Socket编程 理解混合密码系统 掌握Java 密码技术相关API的使用 教材学习中的 ...
- WPF 访问外部的xaml文件
原文:WPF 访问外部的xaml文件 今天做主题时,需要访问外部的xaml文件,方法: using (FileStream s = new FileStream("C:\\Control.x ...
- BZOJ4145_The Prices_KEY
题目传送门 看到M<=16经典状态压缩的数据范围,考虑题目. 一道类似于背包的题目. 设f[i][j]表示前i个商店,物品购买状态为j. 先将f[i][j]加上w[i](到i的路费),转移一次, ...
- PostgreSQL数据库表名的大小写实验
磨砺技术珠矶,践行数据之道,追求卓越价值回到上一级页面:PostgreSQL基础知识与基本操作索引页 回到顶级页面:PostgreSQL索引页[作者 高健@博客园 luckyjackgao@g ...
- Git 解决添加到.gitignore的忽略项不生效的问题
今天又在.gitignore添加了一些忽略项,但是后来发现一些东西命名配置了忽略项却还是没起作用,so,分析原因,可能是在我添加忽略项之前,因为这些文件就早已经被提交了,所有他们已经在版本控制中,导致 ...
- 洛咕P4542 [ZJOI2011]营救皮卡丘
套路题? 感觉讲不清,先写建图 把每个点拆成两个,A和B, S->Ai流量=1费用=0,Bi->T流量=1费用=0, Ai->Bj流量=1费用=ij最短路 还有一个特殊的s点,S-& ...