这个应该是目前最全的Tracking相关的文章了

一、Surveyand benchmark:

1.      PAMI2014:VisualTracking_ An Experimental Survey,代码:http://alov300pp.joomlafree.it/trackers-resource.html

2.      CVPR2013:Online Object Tracking: A Benchmark(需FQ)

3.      SignalProcessing  2011:Video Tracking Theory andPractice

4.      ACCV2006:Tutorials-Advances in VisualTracking:中文:视觉跟踪的进展

5.      Evaluationof an online learning approach for robust object tracking

二、研究团体:

1.      Universityof California at Merced:Ming-HsuanYang视觉跟踪当之无愧第一人,后面的人基本上都和气其有合作关系,他引近9000

PublicationsPAMI:6,CVPR:26,ECCV:17,BMCV:6,NIPS:6,IJCV:3,ACCV:3

代表作:RobustVisual Tracking via Consistent Low-Rank Sparse Learning

FCT,IJCV2014:FastCompressive Tracking

RST,PAMI2014:RobustSuperpixel Tracking; SPT,ICCV2011, Superpixeltracking

SVD,TIP2014:LearningStructured Visual Dictionary for Object Tracking

ECCV2014: SpatiotemporalBackground Subtraction Using Minimum Spanning Tree and Optical Flow

PAMI2011:RobustObject Tracking with Online Multiple Instance Learning

MIT,CVPR2009: Visualtracking with online multiple instance learning

IJCV2008: IncrementalLearning for Robust Visual Tracking

2.      SeoulNational University Professor:KyoungMuLee2013年在PAMI上发表5篇,至今无人能及

文献列表PAMI:13,CVPR:30,ECCV:12,ICCV:8,PR:4

PAMI2014:A GeometricParticle Filter for Template-Based Visual Tracking

ECCV2014: Robust Visual Tracking with Double Bounding Box Model

PAMI2013:HighlyNonrigid Object Tracking via Patch-based Dynamic Appearance Modeling

CVPR2014: Interval Tracker: Tracking by Interval Analysis

CVPR2013: MinimumUncertainty Gap for Robust Visual Tracking

CVPR2012:RobustVisual Tracking using Autoregressive Hidden Markov Model

VTS,ICCV2011:Tracking by Sampling Trackers.

VTD,CVPR2010: VisualTracking Decomposition

TST,ICCV2011:Tracking by sampling trackers

3.      TempleUniversity,凌海滨

Publication List PMAI:4,CVPR:19,ICCV:17,ECCV:5,TIP:9

CVPR2014:Multi-targetTracking with Motion Context in Tenor Power Iteration

ECCV2014:TransferLearning Based Visual Tracking with Gaussian Process Regression

ICCV2013:Findingthe Best from the Second Bests - Inhibiting Subjective Bias in Evaluation ofVisual Tracking Algorithms

CVPR2013: Multi-targetTracking by Rank-1 Tensor Approximation

CVPR2012:RealTime Robust L1 Tracker Using Accelerated Proximal Gradient Approach

TIP2012: Real-timeProbabilistic Covariance Tracking with Efficient Model Update

ICCV2011: BlurredTarget Tracking by Blur-driven Tracker

PAMI2011ICCV2009: RobustVisual Tracking and Vehicle Classification via Sparse Representation

ICCV2011:RobustVisual Tracking using L1 Minimization

L1O,CVPR2011: Minimumerror bounded efficient l1 tracker with occlusion detection

L1T, ICCV2009:Robustvisual tracking using l1 minimization

4.      HongKong Polytechnic University AssociateProfessor: Lei Zhang

PapersPAMI:2,CVPR:18,ICCV:14,ECCV:12,ICPR:6,PR:28,TIP:4

STC,ECCV2014: FastTracking via Dense Spatio-Temporal Context Learning

FCT,PAMI2014,ECCV2012:Fast CompressiveTracking, Minghsuan Yang

IETComputer Vision2012:Scale and Orientation Adaptive Mean Shift Tracking

IJPRAI2009:RobustObject Tracking using Joint Color-Texture Histogram

5.      大连理工大学教授 卢湖川国内追踪领域第一人

CVPR2014:VisualTracking via Probability Continuous Outlier Model

TIP2014:VisualTracking via Discriminative Sparse Similarity Map

TIP2014: RobustSuperpixel Tracking

TIP2014: RobustObject Tracking via Sparse Collaborative Appearance Model

CVPR2013: LeastSoft-threshold Squares Tracking, MinghsuanYang

TIP2013:Online Object Trackingwith Sparse Prototypes, Minghsuan Yang

SignalProcessing Letters2013: Graph-RegularizedSaliency Detection With Convex-Hull-Based Center Prior

SignalProcessing2013: On-line LearningParts-based Representation via Incremental Orthogonal Projective Non-negativeMatrix Factorization

CVPR2012:RobustObject Tracking viaSparsity-based Collaborative Model, MinghsuanYang

CVPR2012:VisualTracking via Adaptive Structural Local Sparse Appearance Model, MinghsuanYang

SignalProcessing Letters 2012:Object tracking via 2DPCA and L1-regularization

IETImage Processing 2012:Visual Tracking via Bag of Features

ICPR2012:Superpixel Level Object Recognition Under Local Learning Framework

ICPR2012: Fragment-BasedTracking Using Online Multiple Kernel Learning

ICPR2012: ObjectTracking Based On Local Learning

ICPR2012: ObjectTracking with L2_RLS

ICPR2011:ComplementaryVisual Tracking

FG2011:OnlineMultiple Support Instance Tracking

SignalProcessing2010: A novel methodfor gaze tracking by local pattern model and support vector regressor

ACCV2010: OnFeature Combination and Multiple Kernel Learning for Object Tracking

ACCV: RobustTracking Based on Pixel-wise Spatial Pyramid and Biased Fusion

ACCV2010: HumanTracking by Multiple Kernel Boosting with Locality Affinity Constraints

ICCV2011:SuperpixelTracking, Minghsuan Yang

ICPR2010: RobustTracking Based on Boosted Color Soft Segmentation and ICA-R

ICPR2010: IncrementalMPCA for Color Object Tracking

ICPR2010: Bagof Features Tracking

ICPR2008: GazeTracking By Binocular Vision and LBP Features

6.      南京信息工程大学教授,KaiHua Zhang

7.      OregonstateProfessor,Sinisa Todorovic由视频分割转向Tracking

CSL,CVPR2014: Multi-ObjectTracking via Constrained Sequential Labeling

CVPR2011:MultiobjectTracking as Maximum Weight Independent Set

8.      GrazUniversity of Technology, Austria,Horst Possegger博士

CVPR2014:OcclusionGeodesics for Online Multi-Object Tracking

CVPR2013: RobustReal-Time Tracking of Multiple Objects by Volumetric Mass Densities

9.      马里兰大学Zdenek Kalal博士

TLD,PAMI2011: Tracking-Learning-Detection

TIP2010: Face-TLD:Tracking-Learning-Detection Applied to Faces

ICPR2010:Forward-BackwardError: Automatic Detection of Tracking Failures

CVPR2010: P-N Learning:Bootstrapping Binary Classifiers by Structural Constraints

BMVC2008: Weighted Sampling forLarge-Scale Boosting

中文讲解:

TLD视觉跟踪算法

TLD源码深度分析

庖丁解牛TLD

TLD(Tracking-Learning-Detection)学习与源码理解

三、其他早期工作:

Tracking of a Non-Rigid ObjectviaPatch-based Dynamic Appearance Modeling and Adaptive Basin Hopping Monte CarloSampling

tracking-by-detection

粒子滤波演示与opencv代码

opencv学习笔记-入门(6)-camshift

Camshift算法原理及其Opencv实现

Camshift算法

CamShift算法,OpenCV实现1--Back Projection

目标跟踪学习笔记_2(particle filter初探1)

目标跟踪学习笔记_3(particle filter初探2)

目标跟踪学习笔记_4(particle filter初探3)

目标跟踪学习系列一:on-line boosting and vision 阅读

原文:http://blog.csdn.net/minstyrain/article/details/38640541

Resources in Visual Tracking的更多相关文章

  1. Resources in Visual Tracking(转载)

    这位博主总结了比较新的tracking方面的资源:http://blog.csdn.net/minstyrain/article/details/38640541 http://xilinx.eetr ...

  2. Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking

    Martin Danelljan 判决类追踪模型是由训练样本学习得到,但是为了适应目标和背景的变化sample set在每一帧中都会更新. 令(xjk, yjk)表示第k帧k={1,2,...,t}中 ...

  3. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  4. 论文笔记之: Hierarchical Convolutional Features for Visual Tracking

    Hierarchical Convolutional Features for Visual Tracking  ICCV 2015 摘要:跟卢湖川的那个文章一样,本文也是利用深度学习各个 layer ...

  5. Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记

    原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...

  6. Correlation Filter in Visual Tracking

    涉及两篇论文:Visual Object Tracking using Adaptive Correlation Filters 和Fast Visual Tracking via Dense Spa ...

  7. 论文笔记之:Multiple Feature Fusion via Weighted Entropy for Visual Tracking

    Multiple Feature Fusion via Weighted Entropy for Visual Tracking ICCV 2015 本文主要考虑的是一个多特征融合的问题.如何有效的进 ...

  8. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  9. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

随机推荐

  1. java poi 获取单元格值时间

    完整帮助类:JAVA poi 帮助类 /* * poi特殊日期格式:数字格式化成-yyyy年MM月dd日,格式 * */ private static ArrayList<String> ...

  2. MongoDB与SqlSugar与Ado.Net对比

    SqlSugar NET 4.+ & .NET CORE 高性能 轻量级 ORM框架,众多.NET框架中最容易使用的数据库访问技术 MongoDB与MySql的安装省略...虽然遇到了一些意外 ...

  3. c# 输入姓名直到输入的是quit时,停止输入然后显示出输入的姓名个数及姓名

    1.输入姓名直到输入的是quit时(不区分大小写),停止输入然后显示出输入的姓名个数及姓名: 要求结果如下图所示: class Program { static void Main(string[] ...

  4. Android 标题栏(1)

    本文来自网易云社区 作者:孙有军 标题栏在每个应用中都有,有各种各样的标题栏,今天我们就主要来说说标题栏怎么做,主要内容涉及到自定义标题,ActionBar,Toolbar等知识. 自定义标题 几年前 ...

  5. 程序媛计划——python爬虫

    #用selenium打开百度首页 #第一次运行代码时应该在safari开发者选项中设置'allow remote automation' from selenium import webdriver ...

  6. linux 中定时执行python脚本

    一.让Python随Linux开机自动运行 准备好要自启的脚本auto.py 用root权限编辑以下文件 sudo vim /ect/rc.local 在exit 0上面编辑启动脚本的命令(编辑rc. ...

  7. apicloud 基础

    时间成本  人力成本  很多人想开发app  又碍于时间和金钱成本 . 本色对app  要求不高的话. 混合app 开发是一种很好的方式. apicloud  就是一种很好的方式. apicloud ...

  8. class字节码结构(零:补充:class结构,常量池,字节码指令)

    JVM高级特性与实践(五):实例探究Class类文件 及 常量池 JVM高级特性与实践(六):Class类文件的结构(访问标志,索引.字段表.方法表.属性表集合) JVM高级特性与实践(七):九大类字 ...

  9. 大数据技术之_19_Spark学习_01_Spark 基础解析小结(无图片)

    1.准备安装包 2.Spark Standalone 即独立模式  2.1.解压安装包到你安装的目录.  2.2.拷贝 conf 目录下的 slaves 文件,将 slave 节点的 hostname ...

  10. 【ROS系列】使用QT编写ROS订阅、发布程序

    Linux下一直使用QT进行开发,支持cmake使得很容易导入其他工程.学习ROS过程中,很多函数名称难记,使用QT不仅可以提示补全,还为了以后开发GUI方便吧. 1.安装ros_qtc_plugin ...