[BZOJ1815&BZOJ1488]有色图/图的同构(Polya定理)
由于有很多本质相同的重复置换,我们先枚举各种长度的点循环分别有多少个,这个暴搜的复杂度不大,n=53时也只有3e5左右。对于每种搜索方案可以轻易求出它所代表的置换具体有多少个。
但我们搜索的是点置换组成的循环,要求的是边置换组成的循环。现在问题就是对于每种搜索方案,求出有多少个边循环。
首先,如果一条边的两个端点属于同一点循环,另一条边的端点属于两个不同点循环,那么显然这两条边不可能属于同一边循环。
对于一个长度为L的点循环,观察发现所有两个端点都属于这个点循环的边构成了L/2个边循环。
对于两个长度分别为L1,L2的点循环,由于每条端点分别在这两个点循环中的边都是等价的,所有所有循环长度相等。显然每个循环长度为lcm(L1,L2),所以边共组成gcd(L1,L2)个边循环。
由Polya定理直接得解。
同理[BZOJ1488]可以看作一个完全图的黑白染色,直接令m=2即可。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
int n,m,mod,ans,tot,sm,fac[N],inv[N],Inv[N],L[N]; int gcd(int a,int b){ return b ? gcd(b,a%b) : a; } int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void dfs(int x,int lst){
if (x>n){
int s=,cnt=fac[n],same=;
rep(i,,tot){
s+=L[i]/;
rep(j,i+,tot) s+=gcd(L[i],L[j]);
cnt=1ll*cnt*Inv[L[i]]%mod;
if (i> && L[i]==L[i-]) same++;
else cnt=1ll*cnt*inv[same]%mod,same=;
}
cnt=1ll*cnt*inv[same]%mod;
sm=(sm+cnt)%mod; ans=(ans+1ll*cnt*ksm(m,s))%mod;
return;
}
rep(i,lst,n-x+) L[++tot]=i,dfs(x+i,i),tot--;
} int main(){
freopen("bzoj1815.in","r",stdin);
freopen("bzoj1815.out","w",stdout);
scanf("%d%d%d",&n,&m,&mod);
fac[]=inv[]=Inv[]=;
rep(i,,n) Inv[i]=1ll*(mod-mod/i)*Inv[mod%i]%mod;
rep(i,,n) fac[i]=1ll*fac[i-]*i%mod;
inv[n]=ksm(fac[n],mod-);
for (int i=n-; i; i--) inv[i]=1ll*inv[i+]*(i+)%mod;
dfs(,); printf("%lld\n",1ll*ans*ksm(sm,mod-)%mod);
return ;
}
[BZOJ1815&BZOJ1488]有色图/图的同构(Polya定理)的更多相关文章
- [bzoj1488][HNOI2009]图的同构——Polya定理
题目大意 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b ...
- BZOJ1815 SHOI2006有色图(Polya定理)
置换数量是阶乘级别的,但容易发现本质不同的点的置换数量仅仅是n的整数拆分个数,OEIS(或者写个dp或者暴力)一下会发现不是很大,当n=53时约在3e5左右. 于是暴力枚举点的置换,并且发现根据点的置 ...
- BZOJ 1815: [Shoi2006]color 有色图(Polya定理)
题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得 ...
- 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)
[BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...
- bzoj1488 [HNOI2009]图的同构 Burnside 引理
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...
- bzoj1488[HNOI2009]图的同构
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec M ...
- Polya 定理 学习笔记
群 群的定义 我们定义,对于一个集合 \(G\) 以及二元运算 \(\times\),如果满足以下四种性质,那我们就称 \((G,\times)\) 为一个群. 1. 封闭性 对于 \(a\in G, ...
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- 【群论】polya定理
对Polya定理的个人认识 我们先来看一道经典题目: He's Circles(SGU 294) 有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...
随机推荐
- SQL Server 2000事务复制问题
2000现在用的估计不多了,把之前收集的一些复制问题整理发布出来.可能都是些很白很二的问题,但人总是由最初的无知不断成长●-● SQL Server 2000事务复制问题服务器A(发布) 服务器B(分 ...
- Linux堆内存管理深入分析 (上半部)【转】
转自:http://www.cnblogs.com/alisecurity/p/5486458.html Linux堆内存管理深入分析(上半部) 作者:走位@阿里聚安全 0 前言 近年来,漏洞挖掘越来 ...
- oracle用plsql查询死锁
1. 点击plsql 工具(tool),点击会话(session) 2.点击锁,可以看到锁的session
- Django中的QuerySet
一.QuerySet 查询集,类似一个列表,包含了满足查询条件的所有项.QuerySet 可以被构造,过滤,切片,做为参数传递,这些行为都不会对数据库进行操作.只有你查询的时候才真正的操作数据库.意味 ...
- React-Native 之 环境配置和简单使用
# 前言 学习本系列内容需要具备一定 HTML 开发基础,没有基础的朋友可以先转至 HTML快速入门(一) 学习 本人接触 React Native 时间并不是特别长,所以对其中的内容和性质了解可能会 ...
- Linux下实现多播(组播)
单播只能发送给一个接收方,但是当给多个接收者发送时,不仅仅耗费流量,而且耗费时间,总流量=每个接收者的流量*接受者. 广播方式是发送给所有的主机,广播的坏处是会造成信息污染,大量的信息会占用网络带宽. ...
- day10作业
1.Java中,用{}括起来的代码称为代码块. 代码块分为局部代码块,构造代码块,静态代码块,同步代码块 局部代码块:在方法中出现,限定生命周期,及早释放,提高内存利用率 构造代码块:在类中方法外出现 ...
- jmter提交图片
jmter提交图片 https://www.cnblogs.com/linglingyuese/p/4514808.html
- No.18 selenium学习之路之批量执行测试用例
diascover方法,加载所有测试用例 1.discover方法里面有三个参数: -case_dir:测试用例的目录 -pattern:这个是匹配脚本名称的规则,test*.py意思是匹配test开 ...
- mysql慢sql报警系统
前言:最近有同事反应有的接口响应时间时快时慢,经过排查有的数据层响应时间过长,为了加快定位定位慢sql的准确性,决定简单地搭建一个慢sql报警系统 具体流程如下架构图 第一步:记录日志 每个业务系统都 ...