使用Hive UDF和GeoIP库为Hive加入IP识别功能
Hive是基于Hadoop的数据管理系统,作为分析人员的即时分析工具和ETL等工作的执行引擎,对于如今的大数据管理与分析、处理有着非常大的 意义。GeoIP是一套IP映射数据库,它定时更新,并且提供了各种语言的API,非常适合在做地域相关数据分析时的一个数据源。
Precondition:通过 IP 地址获得用户的地理位置信息
每条记录的基本结构:
一般包含的信息:国家、区域(省/州)、城市、街道、经纬度、ISP提供商等信息
因为IP数据库随着时间经常变化(不过一段时间内变化很小),所以需要有人经常维护和更新。这个数据也不可能完全准确、也不可能覆盖全。这是maxmind的城市准确度 http://www.maxmind.com/app/city_accuracy 。
因为没有权威的数据组织机构,且经常有变化。各家数据供应商,基本上做着做着就形成自己的一套数据了。
目前,国内用的比较有名的是“纯真IP数据库”,国外常用的是 maxmind、ip2location。
IP数据库是否收费:收费、免费都有。一般有人维护的数据往往都是收费的,准确率和覆盖率会稍微高一些。
质量方面:
- 主要概念是准确率和覆盖率。
- 记录数据总条数。纯真现在是38万条(2010年07月30日更新)
- 是否有人维护。
- 数据库更新频率:每月、每周。数据库会定期更新的,maxmind开源版是每月更新一次。
- 本地,将IP数据库下载到本地使用,查询效率高、性能好。常用在统计分析方面。具体形式又分为:
- 内存查询:将全部数据直接加载到内存中,便于高性能查询。或者二进制的数据文件本身就是经过优化的索引文件,可以直接对文件做查询。
- 数据库查询:将数据导入到数据库,再用数据库查询。效率没有内存查询快。
- 远程(web service或ajax),调用远程第三方服务。查询效率自然比较低,一般用在网页应用中。
是否提供API:有的IP数据库提供API,支持多语言(java、javascript、C#等),这样你就不用自己直接分析数据格式、整理、写查询代码了。
是否提供经纬度:纯真IP数据库不提供经纬度,Maxmind提供,如果做地图应用,一般是需要经纬度的。
而UDF是Hive提供的用户自定义函数的接口,通过实现它可以扩展Hive目前已有的内置函数。而为Hive加入一个IP映射函数,我们只需要简单地在UDF中调用GeoIP的Java API即可。
GeoIP的数据文件可以从这里下载:http://www.maxmind.com/download/geoip/database/,由于需
要国家和城市的信息,我这里下载的是http://www.maxmind.com/download/geoip/database
/GeoLiteCity.dat.gz
GeoIP的各种语言的API可以从这里下载:http://www.maxmind.com/download/geoip/api/
操作Steps如下:
Step 1:Hive所需添加的IP地址信息识别UDF函数如下:
package org.hadoop.hive.additionalUDF; import java.io.File;
import java.io.IOException;
import org.apache.hadoop.hive.ql.exec.UDF; import com.maxmind.geoip.Location;
import com.maxmind.geoip.LookupService;
import com.maxmind.geoip.regionName;
import com.maxmind.geoip.timeZone; import java.util.regex.*; public class IPToCC extends UDF {
private static LookupService cl = null;
private static String ipPattern = "\\d+\\.\\d+\\.\\d+\\.\\d+";
private static String ipNumPattern = "\\d+"; static LookupService getLS(String dbfile) throws IOException{ //String sep = System.getProperty("file.separator");
//String dir = "/home/landen/UntarFile/GeoIP"; //String dbfile = dir + sep + "GeoLiteCity.dat";
//String dbfile = "GeoLiteCity.dat";
if(new File(dbfile).exists())
{
if(cl == null)
{
cl = new LookupService(dbfile,LookupService.GEOIP_MEMORY_CACHE);
}
} return cl; } /**
* @param str like "114.43.181.143"
* */ public String evaluate(String str,String ipDBInfo) {
try
{
Location l1 = null;
Matcher mIP = Pattern.compile(ipPattern).matcher(str);
Matcher mIPNum = Pattern.compile(ipNumPattern).matcher(str);
if(mIP.matches())
l1 = getLS(ipDBInfo).getLocation(str);
else if(mIPNum.matches())
l1 = getLS(ipDBInfo).getLocation(Long.parseLong(str)); /*System.out.println("countryCode: " + l1.countryCode +
"\n countryName: " + l1.countryName +
"\n region: " + l1.region +
"\n regionName: " + regionName.regionNameByCode(l1.countryCode, l1.region) +
"\n city: " + l1.city +
"\n latitude: " + l1.latitude +
"\n longitude: " + l1.longitude +
"\n timezone: " + timeZone.timeZoneByCountryAndRegion(l1.countryCode, l1.region));*/ return String.format("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s",l1.countryCode,l1.countryName,l1.region,regionName.regionNameByCode(l1.countryCode, l1.region),l1.city,l1.latitude,l1.longitude,timeZone.timeZoneByCountryAndRegion(l1.countryCode, l1.region));
}
catch(Exception e)
{
e.printStackTrace();
if(cl != null)
cl.close();
return null;
}
} public static void main(String[] args)
{
String dbfile = "GeoLiteCity.dat";
IPToCC ipTocc = new IPToCC();
String ipAdress = "221.12.10.218"; System.out.println(ipTocc.evaluate(ipAdress,dbfile));
} }
Step 2.将以上程序和GeoIP的API程序,一起打成JAR包IPToCC.jar,和数据文件(GeoLiteCity.dat)一起放到Hive所在的服务器的一个位置。然后可以按照以下两种方式将以上资源添加到Hive中:
1> 打开Hive执行以下语句:
landen@Master:~/UntarFile/hive-0.10.0$ bin/hive
WARNING: org.apache.hadoop.metrics.jvm.EventCounter is deprecated. Please use org.apache.hadoop.log.metrics.EventCounter in all the log4j.properties files.
Logging initialized using configuration in jar:file:/home/landen/UntarFile/hive-0.10.0/lib/hive-common-0.10.0.jar!/hive-log4j.properties
Hive history file=/home/landen/UntarFile/hive-0.10.0/logs/hive_job_log_landen_201312081638_1930432077.txt
hive (default)> use stuchoosecourse;
OK
Time taken: 5.251 seconds
hive (stuchoosecourse)> add file /home/landen/UntarFile/GeoIP/GeoLiteCity.dat;
Added resource: /home/landen/UntarFile/GeoIP/GeoLiteCity.dat
hive (stuchoosecourse)> add jar /home/landen/UntarFile/hive-0.10.0/lib/IPTocc.jar;
Added /home/landen/UntarFile/hive-0.10.0/lib/IPTocc.jar to class path
Added resource: /home/landen/UntarFile/hive-0.10.0/lib/IPTocc.jar
hive (stuchoosecourse)> create temporary function IP4Tocc as 'org.hadoop.hive.additionalUDF.IPToCC';
OK
Time taken: 0.107 seconds
2> 在启动hive shell命令前,在$HIVE_HOME/conf目录下添加.hiverc文件,然后添加如下内容:
add file /home/landen/UntarFile/GeoIP/GeoLiteCity.dat;
add jar /home/landen/UntarFile/hive-0.10.0/lib/IPTocc.jar;
create temporary function IP4Tocc as 'org.hadoop.hive.additionalUDF.IPToCC';
当启动hive shell命令后,hive会将加载.hiverc文件内容并添加到全局内容中,便于client使用 Step 3:Hive测试内容如下:
hive (stuchoosecourse)> select * from ipidentifier;
OK
ipadress
221.12.10.218
60.180.248.201
125.111.251.118
Time taken: 0.099 seconds
hive (stuchoosecourse)> select IP4Tocc(ipadress,'./GeoLiteCity.dat') from ipidentifier;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201312042044_0020, Tracking URL = http://Master:50030/jobdetails.jsp?jobid=job_201312042044_0020
Kill Command = /home/landen/UntarFile/hadoop-1.0.4/libexec/../bin/hadoop job -kill job_201312042044_0020
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2013-12-08 20:54:10,276 Stage-1 map = 0%, reduce = 0%
2013-12-08 20:54:18,308 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:19,313 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:20,317 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:21,322 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:22,326 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:23,331 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:24,402 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 2.55 sec
MapReduce Total cumulative CPU time: 2 seconds 550 msec
Ended Job = job_201312042044_0020
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 2.55 sec HDFS Read: 306 HDFS Write: 188 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 550 msec
OK
_c0
CN China 02 Zhejiang Hangzhou 30.293594 120.16141 Asia/Shanghai
CN China 02 Zhejiang Wenzhou 27.999405 120.66681 Asia/Shanghai
CN China 02 Zhejiang Ningbo 29.878204 121.5495 Asia/Shanghai
hive (stuchoosecourse)> select split(IP4Tocc(ipadress,'./GeoLiteCity.dat'),'\t') from ipidentifier;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201312042044_0021, Tracking URL = http://Master:50030/jobdetails.jsp?jobid=job_201312042044_0021
Kill Command = /home/landen/UntarFile/hadoop-1.0.4/libexec/../bin/hadoop job -kill job_201312042044_0021
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2013-12-08 21:12:46,717 Stage-1 map = 0%, reduce = 0%
2013-12-08 21:12:56,764 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:12:57,768 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:12:58,772 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:12:59,775 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:13:00,778 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:13:01,782 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:13:02,786 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 4.28 sec
MapReduce Total cumulative CPU time: 4 seconds 280 msec
Ended Job = job_201312042044_0021
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 4.28 sec HDFS Read: 306 HDFS Write: 188 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 280 msec
OK
_c0
["CN","China","02","Zhejiang","Hangzhou","30.293594","120.16141","Asia/Shanghai"]
["CN","China","02","Zhejiang","Wenzhou","27.999405","120.66681","Asia/Shanghai"]
["CN","China","02","Zhejiang","Ningbo","29.878204","121.5495","Asia/Shanghai"]
Time taken: 45.037 seconds
hive (stuchoosecourse)> create table HiddenIPInfo(
> IP string,countrycode string,countryname string,region string,regionname string,city string,
> latitude string,longitude string,timezone string);
OK
Time taken: 1.828 seconds
hive (stuchoosecourse)> show tables;
OK
tab_name
hbase_stu_course
hiddenipinfo
ipidentifier
Time taken: 0.486 seconds
hive (stuchoosecourse)> describe hiddenipinfo;
OK
col_name data_type comment
ip string
countrycode string
countryname string
region string
regionname string
city string
latitude string
longitude string
timezone string
Time taken: 0.33 seconds
hive (stuchoosecourse)> from(select ipadress,split(IP4Tocc(ipadress,'./GeoLiteCity.dat'),'\t') as IPInfo from ipidentifier)e
> insert overwrite table hiddenipinfo
> select e.ipadress,e.IPInfo[0] as countrycode,e.IPInfo[1] as countryname,e.IPInfo[2] as region,
> e.IPInfo[3] as regionname,e.IPInfo[4] as city,e.IPInfo[5] as latitude,e.IPInfo[6] as longitude,
> e.IPInfo[7] as timezone;
Total MapReduce jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201312042044_0023, Tracking URL = http://Master:50030/jobdetails.jsp?jobid=job_201312042044_0023
Kill Command = /home/landen/UntarFile/hadoop-1.0.4/libexec/../bin/hadoop job -kill job_201312042044_0023
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2013-12-08 21:58:12,406 Stage-1 map = 0%, reduce = 0%
2013-12-08 21:58:18,449 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:19,454 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:20,458 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:21,462 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:22,466 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:23,470 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:24,474 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 1.48 sec
MapReduce Total cumulative CPU time: 1 seconds 480 msec
Ended Job = job_201312042044_0023
Ended Job = 39195028, job is filtered out (removed at runtime).
Ended Job = 1695434910, job is filtered out (removed at runtime).
Moving data to: hdfs://Master:9000/home/landen/UntarFile/hive-0.10.0/warehouse/hive_2013-12-08_21-57-40_106_7083774091282915969/-ext-10000
Loading data to table stuchoosecourse.hiddenipinfo
Deleted hdfs://Master:9000/home/landen/UntarFile/hive-0.10.0/warehouse/stuchoosecourse.db/hiddenipinfo
Table stuchoosecourse.hiddenipinfo stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 233, raw_data_size: 0]
3 Rows loaded to hiddenipinfo
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 1.48 sec HDFS Read: 306 HDFS Write: 233 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 480 msec
OK
ipadress countrycode countryname region regionname city latitude longitude timezone
Time taken: 45.692 seconds
hive (stuchoosecourse)> show tables;
OK
tab_name
hbase_stu_course
hiddenipinfo
ipidentifier
Time taken: 0.053 seconds
hive (stuchoosecourse)> select * from hiddenipinfo;
OK
ip countrycode countryname region regionname city latitude longitude timezone
221.12.10.218 CN China 02 Zhejiang Hangzhou 30.293594 120.16141 Asia/Shanghai
60.180.248.201 CN China 02 Zhejiang Wenzhou 27.999405 120.66681 Asia/Shanghai
125.111.251.118 CN China 02 Zhejiang Ningbo 29.878204 121.5495 Asia/Shanghai
Time taken: 0.083 seconds
使用Hive UDF和GeoIP库为Hive加入IP识别功能的更多相关文章
- (转)使用Hive UDF和GeoIP库为Hive加入IP识别功能
Hive是基于Hadoop的数据管理系统,作为分析人员的即时分析工具和ETL等工作的执行引擎,对于如今的大数据管理与分析.处理有着非常大的 意义.GeoIP是一套IP映射数据库,它定时更新,并且提供了 ...
- Hive UDF开发-简介
Hive进行UDF开发十分简单,此处所说UDF为Temporary的function,所以需要hive版本在0.4.0以上才可以. Hive的UDF开发只需要重构UDF类的evaluate函数即可.例 ...
- DeveloperGuide Hive UDF
Creating Custom UDFs First, you need to create a new class that extends UDF, with one or more method ...
- [转]HIVE UDF/UDAF/UDTF的Map Reduce代码框架模板
FROM : http://hugh-wangp.iteye.com/blog/1472371 自己写代码时候的利用到的模板 UDF步骤: 1.必须继承org.apache.hadoop.hive ...
- 【转】HIVE UDF UDAF UDTF 区别 使用
原博文出自于:http://blog.csdn.net/longzilong216/article/details/23921235(暂时) 感谢! 自己写代码时候的利用到的模板 UDF步骤: 1 ...
- HIVE udf实例
本例中udf来自<hive编程指南>其中13章自定义函数中一个例子. 按照步骤,第一步,建立一个项目,创建 GenericUDFNvl 类. /** * 不能接受第一个参数为null的情况 ...
- 第3节 hive高级用法:13、hive的函数
4.2.Hive参数配置方式 Hive参数大全: https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties 开 ...
- Hive UDF,就这
摘要:Hive UDF是什么?有什么用?怎么用?什么原理?本文从UDF使用入手,简要介绍相关源码,UDF从零开始. 本文分享自华为云社区<Hive UDF,就这>,作者:汤忒撒. Hive ...
- Hive UDF初探
1. 引言 在前一篇中,解决了Hive表中复杂数据结构平铺化以导入Kylin的问题,但是平铺之后计算广告日志的曝光PV是翻倍的,因为一个用户对应于多个标签.所以,为了计算曝光PV,我们得另外创建视图. ...
随机推荐
- Django入门与实践-第20章:QuerySets(查询结果集)(完结)
http://127.0.0.1:8000/boards/1/ #boards/models.py from django.utils.text import Truncator class Topi ...
- FIR IP
(1)多通道系数处理 系数的格式 (1) 每组系数的长度必须一样长: (2)多组系数依次连接即可; 添加多组系数后会,FIR IP核在生成时会多出以下几个信号 .s_axis_config ...
- org.springframework spring-test
需要的jar包 <dependency> <groupId>org.springframework</groupId> <artifactId>spri ...
- 201709018工作日记--RecyclerView的使用(点击,瀑布流的实现)
参考相关博客: http://www.jianshu.com/p/55e3f1b6701f 刘望舒 http://www.jianshu.com/p/4fc6164e4709 王三的猫阿德 http ...
- SQLite数据库下载、安装和学习
SQLite 是一个开源的嵌入式关系数据库,实现自包容.零配置.支持事务的SQL数据库引擎. 其特点是高度便携.使用方便.结构紧凑.高效.可靠.与其他数据库管理系统不同,SQLite 的安装和运行非常 ...
- Scala偏函数与部分函数
函数 1.部分函数 部分应用函数(Partial Applied Function)是缺少部分参数的函数,是一个逻辑上概念. def sum(x: Int, y: Int, z: Int) = x + ...
- java 格式化输出 printf 总结
double d = 345.678; String s = "hello!"; ; //"%"表示进行格式化输出,"%"之后的内容为格式的 ...
- 树和二叉树在java中
树代表一种非线性的数据结构,如果一组数组节点之间存在复杂的一对多关联时,程序就可以考虑使用树来保存这组数据了. 线性表.栈和队列都是线性的数据结构,这种数据结构之内的元素只存在一个对一个的关系.存储, ...
- 为MAC配置终端环境iTerm2+Zsh+oh-my-zsh
首先展示下我的终端吧. 这就是我们为什么要配置iTerm2+Zsh+oh-my-zsh环境的原因: 我们使用zsh解释器,当然等你使用 zsh时就会知道zsh与bash对比的强大之处了. 至于我们的g ...
- .net推送微信消息模板
1.获取access_token public string GetAccess_Token() { string appid = WxPayConfig.APPID; string appsecre ...