bzoj 3676 后缀自动机+马拉车+树上倍增
思路:用马拉车把一个串中的回文串个数降到O(n)级别,然后每个串在后缀自动机上倍增找个数。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
#define PLI pair<LL, int>
#define ull unsigned long long
using namespace std; const int N = + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const int base = ; int n, m, p[N<<];
char s[N<<]; struct SuffixAutomaton {
int last, cur, cnt, ch[N<<][], id[N<<], fa[N<<], dis[N<<], sz[N<<], c[N];
int f[N<<][], pos[N<<];
SuffixAutomaton() {cur = cnt = ;}
void init() {
for(int i = ; i <= cnt; i++) {
memset(ch[i], , sizeof(ch[i]));
sz[i] = c[i] = dis[i] = fa[i] = ;
}
cur = cnt = ;
}
void extend(int c, int id) {
last = cur; cur = ++cnt;
int p = last; dis[cur] = id;
for(; p && !ch[p][c]; p = fa[p]) ch[p][c] = cur;
if(!p) fa[cur] = ;
else {
int q = ch[p][c];
if(dis[q] == dis[p]+) fa[cur] = q;
else {
int nt = ++cnt; dis[nt] = dis[p]+;
memcpy(ch[nt], ch[q], sizeof(ch[q]));
fa[nt] = fa[q]; fa[q] = fa[cur] = nt;
for(; ch[p][c]==q; p=fa[p]) ch[p][c] = nt;
}
}
sz[cur] = ;
}
void getSize(int n) {
for(int i = ; i <= cnt; i++) c[dis[i]]++;
for(int i = ; i <= n; i++) c[i] += c[i-];
for(int i = cnt; i >= ; i--) id[c[dis[i]]--] = i;
for(int i = cnt; i >= ; i--) {
int p = id[i];
sz[fa[p]] += sz[p];
}
}
LL query(int p, int len) {
for(int j = ; j >= ; j--) {
if(f[p][j] && dis[f[p][j]] >= len) p = f[p][j];
}
return 1ll*len*sz[p];
}
void solve() {
for(int i = , p = ; i <= n; i++)
p = ch[p][s[i]-'a'], pos[i] = p;
for(int i = ; i <= cnt; i++) f[i][] = fa[i];
for(int j = ; j < ; j++)
for(int i = ; i <= cnt; i++)
f[i][j] = f[f[i][j-]][j-]; LL ans = ;
s[] = '-', s[n+] = '+';
int mx = , id = ;
for(int i = ; i <= n; i++) {
if(mx > i) p[i] = min(mx-i, p[*id-i]);
else p[i]=, ans = max(ans, query(pos[i], ));
while(s[i+p[i]]==s[i-p[i]]) p[i]++, ans = max(ans, query(pos[i+p[i]-], *p[i]-));
if(i+p[i]>mx) mx = i+p[i], id = i;
}
mx = , id = ;
for(int i = ; i <= n; i++) {
if(mx > i) p[i] = min(mx-i, p[*id-i]);
else p[i] = ;
while(s[i+p[i]+]==s[i-p[i]]) p[i]++, ans = max(ans, query(pos[i+p[i]], *p[i]));
if(i+p[i]>mx) mx = i+p[i], id = i;
}
printf("%lld\n", ans);
}
} sam; int main() {
scanf("%s", s + );
n = strlen(s + );
for(int i = ; i <= n; i++)
sam.extend(s[i]-'a', i);
sam.getSize(n);
sam.solve();
return ;
} /*
*/
bzoj 3676 后缀自动机+马拉车+树上倍增的更多相关文章
- HDU-6704 K-th occurrence (后缀自动机father树上倍增建权值线段树合并)
layout: post title: HDU-6704 K-th occurrence (后缀自动机father树上倍增建权值线段树合并) author: "luowentaoaa&quo ...
- 洛谷P4493 [HAOI2018]字串覆盖(后缀自动机+线段树+倍增)
题面 传送门 题解 字符串就硬是要和数据结构结合在一起么--\(loj\)上\(rk1\)好像码了\(10k\)的样子-- 我们设\(L=r-l+1\) 首先可以发现对于\(T\)串一定是从左到右,能 ...
- bzoj 3473 后缀自动机多字符串的子串处理方法
后缀自动机处理多字符串字串相关问题. 首先,和后缀数组一样,用分割符连接各字符串,然后建一个后缀自动机. 我们定义一个节点代表的字符串为它原本代表的所有串去除包含分割符后的串.每个节点代表的字符串的数 ...
- LOJ3049 [十二省联考2019] 字符串问题 【后缀自动机】【倍增】【拓扑排序】
题目分析: 建出后缀自动机,然后把A串用倍增定位到后缀自动机上,再把B串用倍增定位到后缀自动机上. SAM上每个点上的A串根据长度从小到大排序,建点,依次连边. 再对于SAM上面每个点,连到儿子的边, ...
- BZOJ3998: [TJOI2015]弦论(后缀自动机,Parent树)
Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个. ...
- 【codeforces666E】Forensic Examination 广义后缀自动机+树上倍增+线段树合并
题目描述 给出 $S$ 串和 $m$ 个 $T_i$ 串,$q$ 次询问,每次询问给出 $l$ .$r$ .$x$ .$y$ ,求 $S_{x...y}$ 在 $T_l,T_{l+1},...,T_r ...
- CF666E Forensic Examination 广义后缀自动机_线段树合并_树上倍增
题意: 给定一个串 $S$ 和若干个串 $T_{i}$每次询问 $S[pl..pr]$ 在 $Tl..Tr$ 中出现的最多次数,以及出现次数最多的那个串的编号. 数据范围: 需要离线 题解:首先,很常 ...
- 【BZOJ 3676】 3676: [Apio2014]回文串 (SAM+Manacher+倍增)
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 2343 Solved: 1031 Description 考 ...
- [十二省联考2019]字符串问题——后缀自动机+parent树优化建图+拓扑序DP+倍增
题目链接: [十二省联考2019]字符串问题 首先考虑最暴力的做法就是对于每个$B$串存一下它是哪些$A$串的前缀,然后按每组支配关系连边,做一遍拓扑序DP即可. 但即使忽略判断前缀的时间,光是连边的 ...
随机推荐
- angularJS $watch $apply $digest
看O'Reilly的书看到$watch这部分,不过没看懂,网上很多资料也含糊不清,不过还是找到了几个好的,简单记录一下. 一句话说明,$watch是用来监视变量的,好了直接上代码 <html&g ...
- [整理]C中的静态存储区
静态存储区:即内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在.它主要存放静态数据.全局数据和常量.栈区:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些 ...
- subtle:有趣的伪平铺式窗口管理器
Author:吴吉庆 email: jiqingwu@gmail.com home:http://hi.baidu.com/jiqing0925 create:2011-02-19 update:20 ...
- IDEA 2017 破解
一.windows 1.进入hosts文件中:C:\Windows\System32\drivers\etc\hosts 2.将"0.0.0.0 account.jetbrains.com& ...
- tomcat集群及session共享
一般来说,java web app主要用作两个领域: 1.api.api一般是无状态的,所以无需考虑session共享的问题 2.传统web应用和网站,如crm,oa,erp,b2c,bbs等.尤其b ...
- Java并发编程(2) AbstractQueuedSynchronizer的设计与实现
一 前言 上一篇分析AQS的内部结构,其中有介绍AQS是什么,以及它的内部结构的组成,那么今天就来分析下前面说的内部结构在AQS中的具体作用(主要在具体实现中体现). 二 AQS的接口和简单示例 上篇 ...
- vi 编辑器使用技巧
1.由命令"vi --version"所显示的内容知vi的全局配置文件 2.显示行号 ,非编辑模式输入 : set nu 3.显示颜色 1)在文件中找到 "synta ...
- C++ 之Boost 实用工具类及简单使用
本文将介绍几个 Boost 实用工具类,包括 tuple.static_assert.pool.random 和 program_options等等.需要对标准 STL 具备一定的了解才能充分理解本文 ...
- SPOJ 16549 - QTREE6 - Query on a tree VI 「一种维护树上颜色连通块的操作」
题意 有操作 $0$ $u$:询问有多少个节点 $v$ 满足路径 $u$ 到 $v$ 上所有节点(包括)都拥有相同的颜色$1$ $u$:翻转 $u$ 的颜色 题解 直接用一个 $LCT$ 去暴力删边连 ...
- 03 Go 1.3 Release Notes
Go 1.3 Release Notes Introduction to Go 1.3 Changes to the supported operating systems and architect ...