在莫烦Python教程的“Dropout 解决 overfitting”一节中,出现错误如下:

InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]

runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\sklearn\cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning) runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
Traceback (most recent call last): File "<ipython-input-2-64f3a3bcd083>", line 1, in <module>
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest') File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace) File "E:/python/kerasTest/tfDropoutTest9.py", line 67, in <module>
train_result = sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1}) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 895, in run
run_metadata_ptr) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1128, in _run
feed_dict_tensor, options, run_metadata) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1344, in _do_run
options, run_metadata) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1363, in _do_call
raise type(e)(node_def, op, message) InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] Caused by op 'Placeholder_1', defined at:
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 241, in <module>
main()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 237, in main
kernel.start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2808, in run_ast_nodes
if self.run_code(code, result):
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-1-64f3a3bcd083>", line 1, in <module>
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "E:/python/kerasTest/tfDropoutTest9.py", line 39, in <module>
ys = tf.placeholder(tf.float32,[None,10])
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1680, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 4105, in _placeholder
"Placeholder", dtype=dtype, shape=shape, name=name)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 3160, in create_op
op_def=op_def)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 1625, in __init__
self._traceback = self._graph._extract_stack() InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

代码如下:

import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer #load data
digits = load_digits()
X = digits.data#从0到9的图片
y = digits.target
y =LabelBinarizer().fit_transform(y)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=.3) def add_layer(inputs,in_size,out_size,layer_name,activation_function=None):
#add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
tf.summary.histogram(layer_name+'/outputs',outputs)
return outputs xs = tf.placeholder(tf.float32,[None,64])#8*8
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32) #add output layer
l1 = add_layer(xs,64,50,'l1',activation_function=tf.nn.tanh)
prediction = add_layer(l1,50,10,'l2',activation_function=tf.nn.softmax) #the loss between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1]))#loss
tf.summary.scalar('loss',cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy) sess = tf.Session()
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter("logs/train",sess.graph)
test_writer = tf.summary.FileWriter("logs/test",sess.graph) sess.run(tf.global_variables_initializer()) for i in range(500):
sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})
if i % 50 == 0:
train_result = sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1})
test_result = sess.run(merged,feed_dict={xs:X_test,ys:y_test,keep_prob:1})
train_writer.add_summary(train_result,i)
test_writer.add_summary(test_result,i)

原因:

在feed_dict中没有加入keep_prob的key和value

sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})中,没有写入keep_prob:0.5

造成feed_dict和placeholder的对应问题,但改正后,仍报该错误。反复检查了几遍,并没有发现问题。

最后实在无解,关闭了Spyder和anaconda,再打开anaconda和Spyder,居然可以正常运行了。。

但是也只是第一次可以正常运行,当删了生成的log文件,再次运行时,仍报该错误..至于为什么第二次运行就又报错仍未解决。

虽然问题不大,但是改了feed_dict后,问题还是没能解决,被困扰了一天,因此记录一下。

InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]的更多相关文章

  1. tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'x_1' with dtype float and shape [?,227,227,3]

    记一次超级蠢超级折磨我的bug. 报错内容: tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a ...

  2. Tensorflow报错:InvalidArgumentError: You must feed a value for placeholder tensor 'input_y' with dtype

    此错误神奇之处是每次第一次运行不会报错,第二次.第三次第四次....就都报错了.关掉重启,又不报错了,运行完再运行一次立马报错!搞笑! 折磨了我半天,终于被我给解决了! 问题解决来源于这边博客:htt ...

  3. 关于placeholder中 文字添加换行 用转义字符&#13;&#10;代替<br>

    今天遇到一个问题 UI给的效果图中 文本域的提示文字 是两行显示, 于是就想到placeholder中能否解析html标签, 尝试后发现并无卵用, 经过调查后发现 可以用转义字符代替<br> ...

  4. typeError:The value of a feed cannot be a tf.Tensor object.Acceptable feed values include Python scalars,strings,lists.numpy ndarrays,or TensorHandles.For reference.the tensor object was Tensor...

    如上贴出了:错误信息和错误代码. 这个问题困扰了自己两天,报错大概是说输入的数据和接受的格式不一样,不能作为tensor. 后来问了大神,原因出在tf.reshape(),因为网络训练时用placeh ...

  5. InvalidArgumentError (see above for traceback): Assign requires shapes of both tensors to match. lhs shape= [2048,38] rhs shape= [2048,2]

    做tensorflow object detection 中,清空下checkpoint就可以啦

  6. tensorflow ValueError: Cannot feed value of shape (5000,) for Tensor 'output:0', which has shape '(?, 10)'

    提供的训练数据和定义的模型之间的维度不对应. 在MNIST手写数字识别时,在 mnist = input_data.read_data_sets("MNIST_data/") 中, ...

  7. 实战Google深度学习框架-C3-TensorFlow入门

    第三章:TensorFlow入门 TensorFlow存在计算模型,数据模型和运算模型(本文用TF代表TensorFlow) 3.1 计算模型-计算图 3.1.1 计算图的概念 TensorFlow这 ...

  8. 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结

    折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...

  9. [2] TensorFlow 向前传播算法(forward-propagation)与反向传播算法(back-propagation)

    TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlo ...

随机推荐

  1. 【10.13】Bug Bounty Write-up 总结

    今天惯例邮箱收到了Twitter的邮件提醒有新的post,这种邮件每天都能收到几封,正好看到一个Bug Bounty的write up,比较感兴趣,看起来也在我的理解范围之内,这里对这篇write u ...

  2. UART、SPI、I2C协议异同点

    I2C.SPI.UART都是常见的低速板级通信协议,目前主流的SoC都内置了这些通讯协议的控制器,同样,各种传感器.Touch控制器.指纹模块.蓝牙模块.WIFI模块也都兼容这三种通信方式的一种或几种 ...

  3. WebGL——osg框架学习三

    今天继续来Draw绘制的osg模块的学习,昨天我们学习的是StateBin渲染状态树节点类,今天我们来继续学习下一个Draw的基础类DrawableEntity渲染对象实体类.这个类和Drawable ...

  4. Unity3D之AR开发(一)

    近期研究了下AR技术,下面给大家分享一下. 第一种方法:高通AR(Vuforia) Vuforia插件下载地址(官网): https://developer.vuforia.com/downloads ...

  5. Arthas Alibaba 开源 Java 诊断工具

    Arthas 用户文档 English Docs Arthas(阿尔萨斯) 能为你做什么? Arthas 是Alibaba开源的Java诊断工具,深受开发者喜爱. 当你遇到以下类似问题而束手无策时,A ...

  6. Redis源码阅读(六)集群-故障迁移(下)

    Redis源码阅读(六)集群-故障迁移(下) 最近私人的事情比较多,没有抽出时间来整理博客.书接上文,上一篇里总结了Redis故障迁移的几个关键点,以及Redis中故障检测的实现.本篇主要介绍集群检测 ...

  7. golang -- 字符串就地取反

    字符串 定义 在golang中字符串是一种不可变的字节序列,它可以包含任意的数据,包括0值字节,但主要是人类可以阅读的文本.golang中默认字符串被解读为utf-8编码的Unicode码点(文字符号 ...

  8. docker中创建MySQL及在外部使用Navicat连接

    1:获取MySQL镜像 运行 docker pull mysql [root@MyCentos7- ~]# docker pull mysql Using default tag: latest la ...

  9. Azure-如何排查应用程序网关返回 HTTP Code 502 或客户端得到应用程序网关响应慢的问题(二)

    问题描述 经过如何排查应用程序网关返回 HTTP Code 502 或客户端得到应用程序网关响应慢的问题(一)中的排查步骤,可以判断出是由于 Web 服务器自身问题导致的响应异常. 那么可以在 IIS ...

  10. python之multiprocessing创建进程

    python的multiprocessing模块是用来创建多进程的,下面对multiprocessing总结一下使用记录. multiprocessing创建多进程在windows和linux系统下的 ...