在莫烦Python教程的“Dropout 解决 overfitting”一节中,出现错误如下:

InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]

runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\sklearn\cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning) runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
Traceback (most recent call last): File "<ipython-input-2-64f3a3bcd083>", line 1, in <module>
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest') File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace) File "E:/python/kerasTest/tfDropoutTest9.py", line 67, in <module>
train_result = sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1}) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 895, in run
run_metadata_ptr) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1128, in _run
feed_dict_tensor, options, run_metadata) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1344, in _do_run
options, run_metadata) File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1363, in _do_call
raise type(e)(node_def, op, message) InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] Caused by op 'Placeholder_1', defined at:
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 241, in <module>
main()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 237, in main
kernel.start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2808, in run_ast_nodes
if self.run_code(code, result):
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-1-64f3a3bcd083>", line 1, in <module>
runfile('E:/python/kerasTest/tfDropoutTest9.py', wdir='E:/python/kerasTest')
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "E:/python/kerasTest/tfDropoutTest9.py", line 39, in <module>
ys = tf.placeholder(tf.float32,[None,10])
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1680, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 4105, in _placeholder
"Placeholder", dtype=dtype, shape=shape, name=name)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 3160, in create_op
op_def=op_def)
File "C:\Users\Admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 1625, in __init__
self._traceback = self._graph._extract_stack() InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

代码如下:

import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer #load data
digits = load_digits()
X = digits.data#从0到9的图片
y = digits.target
y =LabelBinarizer().fit_transform(y)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=.3) def add_layer(inputs,in_size,out_size,layer_name,activation_function=None):
#add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
tf.summary.histogram(layer_name+'/outputs',outputs)
return outputs xs = tf.placeholder(tf.float32,[None,64])#8*8
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32) #add output layer
l1 = add_layer(xs,64,50,'l1',activation_function=tf.nn.tanh)
prediction = add_layer(l1,50,10,'l2',activation_function=tf.nn.softmax) #the loss between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1]))#loss
tf.summary.scalar('loss',cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy) sess = tf.Session()
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter("logs/train",sess.graph)
test_writer = tf.summary.FileWriter("logs/test",sess.graph) sess.run(tf.global_variables_initializer()) for i in range(500):
sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})
if i % 50 == 0:
train_result = sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1})
test_result = sess.run(merged,feed_dict={xs:X_test,ys:y_test,keep_prob:1})
train_writer.add_summary(train_result,i)
test_writer.add_summary(test_result,i)

原因:

在feed_dict中没有加入keep_prob的key和value

sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})中,没有写入keep_prob:0.5

造成feed_dict和placeholder的对应问题,但改正后,仍报该错误。反复检查了几遍,并没有发现问题。

最后实在无解,关闭了Spyder和anaconda,再打开anaconda和Spyder,居然可以正常运行了。。

但是也只是第一次可以正常运行,当删了生成的log文件,再次运行时,仍报该错误..至于为什么第二次运行就又报错仍未解决。

虽然问题不大,但是改了feed_dict后,问题还是没能解决,被困扰了一天,因此记录一下。

InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]的更多相关文章

  1. tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'x_1' with dtype float and shape [?,227,227,3]

    记一次超级蠢超级折磨我的bug. 报错内容: tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a ...

  2. Tensorflow报错:InvalidArgumentError: You must feed a value for placeholder tensor 'input_y' with dtype

    此错误神奇之处是每次第一次运行不会报错,第二次.第三次第四次....就都报错了.关掉重启,又不报错了,运行完再运行一次立马报错!搞笑! 折磨了我半天,终于被我给解决了! 问题解决来源于这边博客:htt ...

  3. 关于placeholder中 文字添加换行 用转义字符&#13;&#10;代替<br>

    今天遇到一个问题 UI给的效果图中 文本域的提示文字 是两行显示, 于是就想到placeholder中能否解析html标签, 尝试后发现并无卵用, 经过调查后发现 可以用转义字符代替<br> ...

  4. typeError:The value of a feed cannot be a tf.Tensor object.Acceptable feed values include Python scalars,strings,lists.numpy ndarrays,or TensorHandles.For reference.the tensor object was Tensor...

    如上贴出了:错误信息和错误代码. 这个问题困扰了自己两天,报错大概是说输入的数据和接受的格式不一样,不能作为tensor. 后来问了大神,原因出在tf.reshape(),因为网络训练时用placeh ...

  5. InvalidArgumentError (see above for traceback): Assign requires shapes of both tensors to match. lhs shape= [2048,38] rhs shape= [2048,2]

    做tensorflow object detection 中,清空下checkpoint就可以啦

  6. tensorflow ValueError: Cannot feed value of shape (5000,) for Tensor 'output:0', which has shape '(?, 10)'

    提供的训练数据和定义的模型之间的维度不对应. 在MNIST手写数字识别时,在 mnist = input_data.read_data_sets("MNIST_data/") 中, ...

  7. 实战Google深度学习框架-C3-TensorFlow入门

    第三章:TensorFlow入门 TensorFlow存在计算模型,数据模型和运算模型(本文用TF代表TensorFlow) 3.1 计算模型-计算图 3.1.1 计算图的概念 TensorFlow这 ...

  8. 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结

    折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...

  9. [2] TensorFlow 向前传播算法(forward-propagation)与反向传播算法(back-propagation)

    TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlo ...

随机推荐

  1. 动态权限<二>之淘宝、京东、网易新闻 权限申请交互设计对比分析

    移动智能设备的快速普及,给生活带来巨大的精彩,但是智能设备上用户的信息数据很多,隐私数据也非常多,各种各样的app可能通过各种方式在悄悄的收集用户数据,而用户的隐私就变得耐人寻味了.比如之前的可以无限 ...

  2. 记一个小bug的锅

    人生中的第一个线上bug 我参与的第一个项目就出现了.但是自己还觉得这锅也不全是自己的,毕竟那么明显的bug出现在历史模块中(不是我写的新模块),难道测试部就没一点责任?代码走查人员就没一点责任?不过 ...

  3. NAT概念解释(不完全版,但不会搞错...)

    NAT在计算器网络中,网络地址转换(Network Address Translation,缩写为NAT),也叫做网络掩蔽或者IP掩蔽(IP masquerading)是一种IP数据包在通过路由器或防 ...

  4. JavaScript学习笔记(七)—— 再说函数

    第八章 函数 1 函数声明和函数表达式 差别一:函数声明:函数在执行代码前被创建:函数表达式是在运行阶段执行代码时创建: 差别二:函数声明创建一个与函数同名的变量,并让她指向函数:使用函数表达式,不给 ...

  5. ats编译中增加透明度 选项

    在大多数情况下,如果环境支持透明度,则configure将自动启用它.对于其他环境,可能需要 配置configure 选项. --enable-posix-cap 这实现了POSIX功能,这是透明度所 ...

  6. sqlmap 进阶 (一)

    0x1 命令 以此类推,可以具体自己研究有哪些参数,放在哪,有什么用,怎么用 参考:https://blog.csdn.net/bo_mask/article/details/76130848 0x2 ...

  7. NIO基本概念

    1.  IO和NIO的区别 IO     面向流(stream oriented)  阻塞(blocking io) 无                  NIO  面向缓冲区(buffer orie ...

  8. css 剩余宽度完全填充

    从网上转的. <html> <head> <meta http-equiv="Content-Type" content="text/htm ...

  9. bc命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/lovevivi/p/4359296.html 最近经常要在linux下做一些进制转换,看到了可以使用bc命令,如下: ...

  10. PSP Daily软件beta版本——基于spec评论

    题目要求: 每个小组评论其他小组beta发布作品的软件功能说明书. 试用(并截图)所有其他小组的beta作品,与软件功能说明书对比,评论beta作品对软件功能说明书的实现. 根据软件功能说明书,测试所 ...