STM32F4: Generating parallel signals with the FSMC

The goal: The memory controller can be used to generate a "generic" 16-bit parallel data stream with clock. Address generation will be disregarded, as well as other control signals dedicated to memory chips.

It must be noted that the STM32F40x and STM32F41x have the FSMC (static memories), while theSTM32F42x and STM32F43x have the FMC (static and dynamic memories). The differences between the two concern the support of SDRAM (dynamic RAM), address and data write FIFOs (both data and address, instead of data only for FSMC, and 16-word long instead of 2-word long only for FSMC), and the 32-bit wide data bus for FMC (See [1]).

Set pins (1st attempt)

Only data bus FSMC_D[15:0] and clock FSMC_CLK will be used (set as alternate function). The other pins are set as standard GPIOs (general purpose output).

FSMC is alternate function 12 according to the datasheet (See "Table 9. Alternate function mapping" in [2]).

/* PD: 0, 1, 3, 8, 9, 10, 14, 15 -> alternate function (0b10) */
GPIOD->MODER = 0xA56A559A;
GPIOD->AFR[] = 0xCCCCCCCC; /* FSMC = AF12 (0xC) */
GPIOD->AFR[] = 0xCCCCCCCC;
/* PE: 7, 8, 9, 10, 11, 12, 13, 14, 15 -> alternate function (0b10) */
GPIOE->MODER = 0xAAAA9555;
GPIOE->AFR[] = 0xCCCCCCCC;
GPIOE->AFR[] = 0xCCCCCCCC;

FSMC setup/init (1st attempt)

Be careful of the the wicked register map documentation of the FSMC block:

This is very misleading, since all other table are ordered as found in memory, but not here.

/* PSRAM, synchronous (burst), non-multiplexed */
/* control register */
FSMC_Bank1->BTCR[] = FSMC_BCR1_CBURSTRW | FSMC_BCR1_WAITPOL | FSMC_BCR1_BURSTEN | FSMC_BCR1_MWID_0 | FSMC_BCR1_WREN | FSMC_BCR1_MTYP_0 /* PSRAM */ | FSMC_BCR1_MBKEN;
/* timing register */
FSMC_Bank1->BTCR[] = FSMC_BTR1_CLKDIV_1 /* div 3 */ ;

It is noticable that the timing are all set to 0, except the clock.

Result (1st attempt)

The code writing to the FSMC is using an array and simulate a sequencial memory request, in order to take advantage of the burst mode.

volatile uint16_t* fsmc = (uint16_t*)0x60000000;

for(uint32_t i=; i<(sizeof(bitstream_bin)/); i++) {
uint16_t w = ((uint16_t*)bitstream_bin)[i];
fsmc[i] = w;
}

The clock is ~54MHz, but the maximum clock is HCLK/2 = 168/2=84MHz. Unfortunately, my oscilloscope is too slow for this.

At least, 4 clock cycles are required to write one data. Data latency (DATLAT lowest value is 2). There is one cyle to give the address, two cyle of latency, one cyle for give the data.

At max FSMC speed (~84MHz), after dividing the clock by 4, the 16-bit parallel transmission would only be ~20MHz.

Bursts are possible up to 32 bits (two 16-bit data words). When using this feature, two data words are send for each address, hence more data is sent, but the clock is hard to use: 3 ticks for the (empty) address, 1 tick for the first data, 1 tick for the second data (5 cycles for 2 data, ~30MHz max).

Set pins (2nd attempt)

/* PD: 0, 1, 8, 9, 10, 14, 15 -> alternate function (0b10) */
GPIOD->MODER = 0xA56A555A;
GPIOD->AFR[] = 0xCCCCCCCC; /* FSMC = AF12 (0xC) */
GPIOD->AFR[] = 0xCCCCCCCC;
/* PE: 7, 8, 9, 10, 11, 12, 13, 14, 15 -> alternate function (0b10) */
GPIOE->MODER = 0xAAAA9555;
GPIOE->AFR[] = 0xCCCCCCCC;
GPIOE->AFR[] = 0xCCCCCCCC;
/* PB: 7 -> AF */
GPIOB->MODER = 0x55551555;
GPIOB->AFR[] = 0xCCCCCCCC;
GPIOB->AFR[] = 0xCCCCCCCC;

FSMC setup/init (2nd attempt)

/* NOR flash, asynchronous, multiplexed */
/* control register */
FSMC_Bank1->BTCR[] = FSMC_BCR1_WREN | FSMC_BCR1_FACCEN | FSMC_BCR1_MWID_0 /* 16-bit */ | FSMC_BCR1_MTYP_1 /* NOR flash */ | FSMC_BCR1_MUXEN | FSMC_BCR1_MBKEN;
/* timing register */
FSMC_Bank1->BTCR[] = FSMC_BTR1_CLKDIV_0 | FSMC_BTR1_DATAST_0 | FSMC_BTR1_ADDHLD_0 | FSMC_BTR1_ADDSET_1;

Result (2nd attempt)

We want to use the NADV signal as a new clock CLK.

volatile uint16_t* fsmc = (uint16_t*)0x60000000;
uint16_t w[] = {
0xFFFF, 0x0000, 0xFFFF, 0x0000,
0xFFFF, 0x0000, 0xFFFF, 0x0000}; for(uint32_t i=;i<;i++) {
fsmc[] = w[i];
}

We write to the same address in order to force a new memory transaction and cycle NADV.

The problem is that the data bus is updated after the positive edge of the NADV "clock". This issue can be overcome by multiplexing the address and data bus and put the data value as address. The ADDSET value is also increased in order to have a more balanced clock (ADDSET=3).

for(uint32_t i=;i<;i++) {
uint16_t v = w[i];
fsmc[v] = v;
}

Unfortately, the overall clock speed decreased because the address "trick".

Conclusion

A "nice looking" 16-bit parallel signal with clock can be generated at approx. 16MHz using the memory controller (FSMC) in asynchronous NOR Flash mode. 20MHz can be achieved with an external clock divider (div 4) in synchronous PSRAM mode. If the clock edge can be aligned with the data edge, 27MHz is possible from SRAM.

Note: the FMC (Flexible Memory Controller, also supporting SDRAM) in SDRAM mode can generate a synchronous burst of one data per clock. In this case, 84MHz is possible in theory. I haven't the hardware to test it.

STM32F4: Generating parallel signals with the FSMC的更多相关文章

  1. STM32F4: GENERATING A SINE WAVE

    http://amarkham.com/?p=49

  2. Flexible implementation of a system management mode (SMM) in a processor

    A system management mode (SMM) of operating a processor includes only a basic set of hardwired hooks ...

  3. PMP用语集

    AC actual cost 实际成本 ACWP actual cost of work performed 已完工作实际成本 BAC budget at completion 完工预算 BCWP b ...

  4. 论文翻译:2021_DeepFilterNet: A Low Complexity Speech Enhancement Framework for Full-Band Audio based on Deep Filtering

    论文地址:DeepFilterNet:基于深度滤波的全频带音频低复杂度语音增强框架 论文代码:https://github.com/ Rikorose/DeepFilterNet 引用:Schröte ...

  5. STM32F4—fsmc的配置步骤

    0:开启GPIO时钟和FSMC时钟 1:配置GPIO 2:配置片选控制寄存器 3:配置片选时序寄存器 4:配置写入时序寄存器 GPIO_InitTypeDef GPIO_InitStructure;/ ...

  6. STM32F4 SPI with DMA

    STM32F4 SPI with DMA A few people have requested code, so I thought I’d post the code showing how I’ ...

  7. Generating Complex Procedural Terrains Using GPU

    前言:感慨于居然不用tesselation也可以产生这么复杂的地形,当然致命的那个关于不能有洞的缺陷还是没有办法,但是这个赶脚生成的已经足够好了,再加上其它模型估 计效果还是比较震撼的.总之好文共分享 ...

  8. GNU Parallel Tutorial

    GNU Parallel Tutorial Prerequisites Input sources A single input source Multiple input sources Linki ...

  9. Massively parallel supercomputer

    A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...

随机推荐

  1. Linux - seq 预设外部命令

    seq 是Linux 中一个预设的外部命令,一般用作一堆数字的简化写法. 常用参数: # 不指定起始数值,则默认为 1 -s # 选项主要改变输出的分格符, 预设是 \n -w # 等位补全,就是宽度 ...

  2. websocket知识简单总结!

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  3. 「Android 开发」入门笔记

    「Android 开发」入门笔记(界面编程篇) ------每日摘要------ DAY-1: 学习笔记: Android应用结构分析 界面编程与视图(View)组件 布局管理器 问题整理: Andr ...

  4. Android sdk安装目录中没有platform-tools目录问题详解

    sdk下载地址 http://tools.android-studio.org/index.php/sdk 安装步骤很简单,百度即可. 下面详细说一下,在安装中遇到android sdk下没有plat ...

  5. phantomjs waitFor

    function waitFor(testFx, onReady, timeOutMillis) { var maxtimeOutMillis = timeOutMillis ? timeOutMil ...

  6. 接收二进制流(ArrayBuffer) ,并且显示二进制流图片

    1.调用接口,返回二进制流数据 var xhr = new XMLHttpRequest(); xhr.onreadystatechange = function() { && xhr ...

  7. idea中搜狗输入法不跟随光标,看不到输入的字

    好久没在windows上开发了,今天遇到一个比较坑的问题: 最新版idea,输入法都是最新的;但是idea里面输入字,看不到自己输入的是什么字,好坑... 在外面可以看到输入什么字说明与输入法无关, ...

  8. poj 1611 求0号结点所在集合的元素个数

    求0号结点所在集合的元素个数 Sample Input 100 42 1 25 10 13 11 12 142 0 12 99 2200 21 55 1 2 3 4 51 00 0Sample Out ...

  9. oracle的sql语句大小写

    我相信大家都知道,oracle数据库是区分大小写的,而且oracle的默认为大写的,也就是说你在sql脚本上面写的sql语句,oracle运行的时候,它会自动转化为大写的.注意一下,我这里举例子的计算 ...

  10. ubuntu下root和安装mysql

    sudo password创建新的root密码: 1.用当前登录用户打开终端,在终端输入命令 sudo passwd,输入当前用户的密码然后回车 2.会提示输入新密码,输入完成后回车(http://w ...