import tensorflow as tf
from tensorflow.contrib.slim import nets
slim = tf.contrib.slim
import numpy as np
/root/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
class GoogLeNet(object):   

    def __init__(self, lr, batch_size, iter_num):
self.lr = lr # 学习率
self.batch_size = batch_size
self.iter_num = iter_num # 总共训练多少次 tf.reset_default_graph() # 重置图。有时候大家运行程序时候会提示某某tensor已经被构造。这是因为之前创建的图还在,然后重新运行一遍代码又创建了一个新图。可以在这里加一句tf.reset_default_graph() self.X = tf.placeholder(tf.float32, [None, 224, 224, 3])
self.y = tf.placeholder(tf.float32, [None, 17]) # 17flowersu数据集有17个类
self.dropRate = tf.placeholder(tf.float32) with slim.arg_scope(nets.inception.inception_v1_arg_scope()):
net, endpoints = nets.inception.inception_v1(self.X, num_classes=1001)
# 在这里,我们直接使用预置的模型。
net = endpoints['Mixed_5c']
net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
net = tf.reshape(net , [-1, 1024])
# 下面这些,大家应该非常熟悉了,和MNIST的一样的
net = tf.nn.dropout(net, self.dropRate)
logits = tf.layers.dense(net, 17, use_bias=True,
kernel_initializer=tf.constant_initializer(0),
bias_initializer=tf.constant_initializer(0))
self.logits = logits
self.loss = tf.losses.softmax_cross_entropy(onehot_labels=self.y, logits=logits)
self.train_step = tf.train.GradientDescentOptimizer(self.lr).minimize(self.loss) # 用于模型训练
self.correct_prediction = tf.equal(tf.argmax(self.y, axis=1), tf.argmax(logits, axis=1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) # 用于保存训练好的模型
self.saver = tf.train.Saver() summary_loss = tf.summary.scalar('loss', self.loss)
summary_accuracy = tf.summary.scalar('accuracy', self.accuracy)
self.merged_summary_op = tf.summary.merge_all() def read_image_label_list(self, name_list):
# 读取图像文件和标注列表 img_list=[]
label_list=[] with open(name_list) as fr:
for line in fr.readlines():
imgIndex = int(line.strip())
imgLabel = int(imgIndex / 80)
imgPath = 'data/jpg/image_%04d.jpg' % imgIndex
img_list.append(imgPath)
label_list.append(imgLabel) return img_list, label_list def read_file(self, name_list):
image_list, label_list = self.read_image_label_list(name_list)
imagepaths, labels = tf.train.slice_input_producer([image_list, label_list], shuffle=True)
image = tf.read_file(imagepaths)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize_images(image, [224, 224])
image = tf.image.random_brightness(image, 15)
image = tf.image.random_flip_left_right(image)
image = (image * 1.0 / 127.5 - 1)
label = tf.one_hot(labels, 17)
X, Y = tf.train.batch([image, label], batch_size=self.batch_size, num_threads=2, capacity=self.batch_size*4)
return X, Y def train(self):
training_images, training_labels = self.read_file('trn1.txt')
test_images, test_labels = self.read_file('val1.txt') with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
variables_to_restore = slim.get_variables_to_restore()
init_fn = slim.assign_from_checkpoint_fn(r'pre_trained/inception_v1.ckpt',
variables_to_restore,
ignore_missing_vars=True)
init_fn(sess) summary_writer = tf.summary.FileWriter('log/train_base', sess.graph)
summary_writer_test = tf.summary.FileWriter('log/test_base') for i in range(self.iter_num):
tf.local_variables_initializer().run()
images, labels = sess.run([training_images, training_labels]) feed_dict = {self.dropRate: 0.5,
self.X :images,
self.y :labels}
loss, _ = sess.run([self.loss, self.train_step],
feed_dict=feed_dict) # 每调用一次sess.run,就像拧开水管一样,所有self.loss和self.train_step涉及到的运算都会被调用一次。 if i%10 ==0:
images, labels = sess.run([training_images, training_labels])
train_accuracy, summary_str = sess.run([self.accuracy,self.merged_summary_op], feed_dict={self.X: images, self.y: labels, self.dropRate: 1.}) # 把训练集数据装填进去
summary_writer.add_summary(summary_str, i)
images, labels = sess.run([test_images, test_labels])
test_accuracy, summary_str = sess.run([self.accuracy,self.merged_summary_op], feed_dict={self.X: images, self.y: labels, self.dropRate: 1.}) # 把测试集数据装填进去
summary_writer_test.add_summary(summary_str, i)
print ('iter\t%i\tloss\t%f\ttrain_accuracy\t%f\ttest_accuracy\t%f' % (i,loss,train_accuracy, test_accuracy)) self.saver.save(sess, 'model/flowerModel') # 保存模型
summary_writer.flush()
summary_writer_test.flush()
coord.request_stop()
coord.join(threads) def test(self):
test_images, test_labels = self.read_file('tst1.txt')
with tf.Session() as sess:
self.saver.restore(sess, 'model/flowerModel')
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
Accuracy = []
for i in range(int(340/self.batch_size) + 1):
images, labels = sess.run([test_images, test_labels])
test_accuracy = sess.run(self.accuracy, feed_dict={self.X: images, self.y: labels, self.dropRate: 1.}) # 把测试集数据装填进去
Accuracy.append(test_accuracy)
print('==' * 15)
print( 'Test Accuracy: ', np.mean(np.array(Accuracy)) )
coord.request_stop()
coord.join(threads)
model = GoogLeNet(0.1, 50, 100)
model.train()
model.test()
WARNING:tensorflow:From <ipython-input-2-7ce60d3cb483>:18: calling reduce_mean (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
WARNING:tensorflow:Variable dense/kernel missing in checkpoint pre_trained/inception_v1.ckpt
WARNING:tensorflow:Variable dense/bias missing in checkpoint pre_trained/inception_v1.ckpt
INFO:tensorflow:Restoring parameters from pre_trained/inception_v1.ckpt
iter 0 loss 2.833214 train_accuracy 0.020000 test_accuracy 0.100000
iter 10 loss 1.716118 train_accuracy 0.580000 test_accuracy 0.760000
iter 20 loss 0.940882 train_accuracy 0.940000 test_accuracy 0.800000
iter 30 loss 0.329169 train_accuracy 0.960000 test_accuracy 0.860000
iter 40 loss 0.229579 train_accuracy 1.000000 test_accuracy 0.900000
iter 50 loss 0.096816 train_accuracy 1.000000 test_accuracy 0.940000
iter 60 loss 0.138667 train_accuracy 1.000000 test_accuracy 0.900000
iter 70 loss 0.133150 train_accuracy 1.000000 test_accuracy 0.940000
iter 80 loss 0.048020 train_accuracy 1.000000 test_accuracy 0.920000
iter 90 loss 0.057278 train_accuracy 1.000000 test_accuracy 0.880000
INFO:tensorflow:Restoring parameters from model/flowerModel
==============================
Test Accuracy: 0.94285715

基于GoogLeNet的不同花分类微调训练案例的更多相关文章

  1. 基于Spark Mllib的文本分类

    基于Spark Mllib的文本分类 文本分类是一个典型的机器学习问题,其主要目标是通过对已有语料库文本数据训练得到分类模型,进而对新文本进行类别标签的预测.这在很多领域都有现实的应用场景,如新闻网站 ...

  2. matlab 基于 libsvm工具箱的svm分类遇到的问题与解决

    最近在做基于无线感知的身份识别这个工作,在后期数据处理阶段,需要使用二分类的方法进行训练模型.本身使用matlab做,所以看了一下网上很多都是使用libsvm这个工具箱,就去下载了,既然用到了想着就把 ...

  3. NLP之基于TextCNN的文本情感分类

    TextCNN @ 目录 TextCNN 1.理论 1.1 基础概念 最大汇聚(池化)层: 1.2 textCNN模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 基础概念 在 ...

  4. Windows下mnist数据集caffemodel分类模型训练及测试

    1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和1000 ...

  5. 【ALB技术笔记】基于多线程方式的串行通信接口数据接收案例

    基于多线程方式的串行通信接口数据接收案例 广东职业技术技术学院  欧浩源 1.案例背景 在本博客的<[CC2530入门教程-06]CC2530的ADC工作原理与应用>中实现了电压数据采集的 ...

  6. 【ALB学习笔记】基于事件触发方式的串行通信接口数据接收案例

    基于事件触发方式的串行通信接口数据接收案例 广东职业技术学院  欧浩源 一.案例背景 之前写过一篇<基于多线程方式的串行通信接口数据接收案例>的博文,讨论了采用轮询方式接收串口数据的情况. ...

  7. 【ALB学习笔记】基于多线程方式的串行通信接口数据接收案例

    基于多线程方式的串行通信接口数据接收案例 广东职业技术技术学院  欧浩源 1.案例背景 在本博客的<[CC2530入门教程-06]CC2530的ADC工作原理与应用>中实现了电压数据采集的 ...

  8. Httpd服务进阶知识-基于Apache Modele的LAMP架构之WordPress案例

    Httpd服务进阶知识-基于Apache Modele的LAMP架构之WordPress案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.安装依赖包及数据库授权 博主推荐阅读 ...

  9. Httpd服务进阶知识-基于Apache Modele的LAMP架构之PhpMyAdmin案例

    Httpd服务进阶知识-基于Apache Modele的LAMP架构之PhpMyAdmin案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.常见LAMP应用 PhpMyAdm ...

随机推荐

  1. 浅析C#中的Thread ThreadPool Task和async/await

    .net 项目中不可避免地要与线程打交道,目的都是实现异步.并发.从最开始的new Thread()入门,到后来的Task.Run(),如今在使用async/await的时候却有很多疑问. 先来看一段 ...

  2. [leetcode.com]算法题目 - Plus One

    Given a number represented as an array of digits, plus one to the number. class Solution { public: v ...

  3. 自定义SpringBoot控制台输出的图案

    pringboot启动的时候,控制台输出的图案叫banner banner?啥玩意儿?相信有些人,一定是一脸懵逼... ——这个就不陌生了吧,这个是我们启动springboot的时候,控制台输出的.. ...

  4. python收集jvm数据

    之前前辈用 java 写的收集 jvm 脚本, 不太方便组内小伙伴维护, 遂用 python 重写了 #!/usr/bin/env python # -*- coding: utf-8 -*- # F ...

  5. Docker - Docker与Vagrant的区别

    Docker Docker - HomePage Wiki - Docker Docker简介 Overview Docker 是一个开源的应用容器引擎,基于 Go 语言并遵从 Apache2.0 协 ...

  6. python并发编程之进程池,线程池concurrent.futures

    进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多, 这会对 ...

  7. EXECUTE 后的事务计数指示缺少了 COMMIT 或 ROLLBACK TRANSACTION 语句。上一计数 = 1,当前计数 = 2

    理解这一句话: 一个begin tran会增加一个事务计数器,要有相同数量的commit与之对应,而rollback可以回滚全部计数器 这个错误一般是出现在嵌套事务中. 测试环境 sql 2008 例 ...

  8. android stdio Error Could not find com.android.tools common 25.2.2

    Error:Could not find com.android.tools:common:25.2.2. Searched in the following locations: file:/D:/ ...

  9. 集合框架_DAY15

    1:集合(掌握) (1)集合的由来 我们需要对多个对象进行存储和获取.可以使用对象数组.但是,如果对象的个数是变化的,对象数组就解决不了了.怎么办呢?java就提供了集合类解决. (2)集合和数组的区 ...

  10. 使用 Redis 共享 Session 会话

    储存模式 1.InProc模式 这是ASP.NET默认的Session管理模式,在应用进程内维护Session. 2.StateServer模式 这是在服务器装了.NET环境后自带的一个StateSe ...