redis缓存
1.缓存穿透
1>.什么是缓存穿透?
业务系统需要查训的数据根本不存在,当业务系统查询时,
首先会在缓存中查训,由于缓存中不存在,然后在往数据
库中查,由于该数据在数据库中也不存在,数据库返回为空。

综上所述:业务系统访问数据库中不存在的数据陈伟缓存穿透。
2>.缓存穿透的危害:
海量请求同一条数据库中不存在的数据,这些请求不经过缓存,
直接访问数据库,数据库压力剧增,业务系统中属IO最为脆弱,
这种危害可能会导致系统奔溃。
3>.为什么会发生缓存穿透?
(1).恶意攻击,故意制造大量不存在的数据,破坏整个系统。
(2).代码逻辑错误。
4>.解决方案:
(1).缓存空的数据:
redis以键值对存储数据,当第一请求数据时,数据不存在,将数据库返回的
的结果为空储存在指定的健中,后续发送请求时直接相应客户端数据不存在,
无需再次查询数据库。
(2).缓存空数据存在两个问题:
<!>.空值做了缓存,以为这缓存中要存更多的健,需要占用更多的内存空间,
如果是攻击,问题会更加严重,应该给这个健设置一个过期时间,让他自动删除。
<2>.缓存层和存储层的数据会有一段时间窗口不一致,会对业务有一定的影响
比如设置5分钟过期,如果缓存层添加这个数据,有一段时间就会出现与数据库不一致,
此时就利用消息系统或者其他方式清除缓存层的空对象
(3).布隆过滤器:
在缓存层再添加一层障碍,布隆过滤器中存储目前数据库所存在的所有key
当业务系统请求查训时,首先在布隆过滤器中查找key是否存在,若不存在,则说明
数据库中没有该条数据,因此缓存就不要查了,直接返回空对象给客户端,
若存在则进入缓存中查训,如果没有再查数据库。

这个方式是用于数据命中率不高,数据相对固定稳定时性低(通常数据集较大)
的应用场景,代码维护复杂,但缓存占用空间较少。
(4).两种方案比教:
对于恶意攻击,查训的key往往不同,而且数据较多,此时,第一种方案比较合适,因为
它存储所有空数据的Key,对恶意攻击的key往往不相同,而且每个key往往只执行一次,
而不在使用第二次,但它保护不了数据库。
对空数据的的key各不相同,key重复请求依据场合而言,应该选用第二种方案,对于空数据的
key数量有限,key重复请求依据场合而言,应该选用第一种。2.缓存雪崩:

1>.什么是缓存雪崩?
如果缓存因某种原因发生宕机,或者存在缓存中的数据大面积的是失效,原本
缓存抵挡的海量查训全部用涌向缓存库,因而导致整个系统崩溃。
2>.如何避免缓存雪崩:
(!).将缓存中的数据失效时间错开,过期时间做一个均匀分布的处理。
(2).排斥锁:第一个线程来读取数据,缓存中没有,先访问数据库,后续线程
再过来访问就必须等待第一个线程访问数据库成功后,再从缓存中访问。
(3)使用分布式锁,这当然是考虑到在分布式环境下,读请求会落到集群中的不同应用服务机器上。分布式锁可以选用zookeeper或基于redis的setnx这类原子性操作来实现。
加锁时需要用到经典的double-check lock。
本方案虽然能够减轻DB压力,防止雪崩。但由于用到了加锁排队,吞吐率是不高的。仅适用于并发量不大的场景。
3.缓存击穿:
1>.什么是热点数据集中失效?
缓存中的每一条数据到会设置失效时间,过了时效时间,该数据就会自动在缓存中删除,
从而保证数据的一致性。
但是,对于一些请求量极高的热点数据,一旦过了失效后海量请求最终会落到数据库上,
从而导致数据库压力极大,系统奔溃

如果第一个线程请求缓存时,缓存中不存在,因而去查讯数据库,就在第一个线程查训数据,而数据库尚未返回查询结果是,
后续线程持续请求,缓存中没有数据,这些请求都会查训数据库,给数据库造成压力,
其次,这些线程持续查询完毕后,都会重复更新缓存。
4.缓存雪崩解决方案:
缓存雪崩是由于原有缓存失效(过期),新缓存未到期间。所有请求都去查询数据库,而对数据库CPU和内存造成巨大压力,严重的会
造成数据库宕机。从而形成一系列连锁反应,造成整个系统崩溃。
  1. 碰到这种情况,一般并发量不是特别多的时候,使用最多的解决方案是加锁排队。
public object GetProductListNew(){
  const int cacheTime = 30;
  const string cacheKey = "product_list";
  const string lockKey = cacheKey;
  var cacheValue = CacheHelper.Get(cacheKey);
  if (cacheValue != null){
    return cacheValue;
  }else{
    lock (lockKey)
  {
    cacheValue = CacheHelper.Get(cacheKey);
    if (cacheValue != null){
      return cacheValue;
    }else{

        cacheValue = GetProductListFromDB(); //这里一般是 sql查询数据。
        CacheHelper.Add(cacheKey, cacheValue, cacheTime);

      }

    }

  }
    return cacheValue;
}
2. 加锁排队只是为了减轻数据库的压力,并没有提高系统吞吐量。假设在高并发下,缓存重建期间key是锁着的,这是过来1000个请求
999个都在阻塞的。同样会导致用户等待超时,这是个治标不治本的方法。
  还有一个解决办法解决方案是:给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓
存。
public object GetProductListNew(){
     int cacheTime = 30;
    string cacheKey = "product_list";
   //缓存标记。
   string cacheSign = cacheKey + "_sign";
   //获取缓存标记
   var sign = CacheHelper.Get(cacheSign);
   //获取缓存值
   var cacheValue = CacheHelper.Get(cacheKey);
   if (sign != null)
  {
    return cacheValue; //未过期,直接返回。
  }
 else
 {
   //缓存标记过期后重新给缓存标记随便给值,然后缓存时间为30分钟
   CacheHelper.Add(cacheSign, "1", cacheTime);
  cacheValue = GetProductListFromDB(); //这里一般是 sql查询数据。
  CacheHelper.Add(cacheKey, cacheValue, cacheTime*2); //日期设缓存时间的2倍,用于脏读。
  return cacheValue;
}
}

redis缓存存在的隐患及其解决方案的更多相关文章

  1. .NET基于Redis缓存实现单点登录SSO的解决方案[转]

    一.基本概念 最近公司的多个业务系统要统一整合使用同一个登录,这就是我们耳熟能详的单点登录,现在就NET基于Redis缓存实现单点登录做一个简单的分享. 单点登录(Single Sign On),简称 ...

  2. .NET基于Redis缓存实现单点登录SSO的解决方案

    一.基本概念 最近公司的多个业务系统要统一整合使用同一个登录,这就是我们耳熟能详的单点登录,现在就NET基于Redis缓存实现单点登录做一个简单的分享. 单点登录(Single Sign On),简称 ...

  3. Redis缓存穿透和缓存雪崩以及解决方案

    Redis缓存穿透和缓存雪崩以及解决方案 Redis缓存穿透和缓存雪崩以及解决方案缓存穿透解决方案布隆过滤缓存空对象比较缓存雪崩解决方案保证缓存层服务高可用性依赖隔离组件为后端限流并降级数据预热缓存并 ...

  4. Redis缓存雪崩、缓存穿透、热点Key解决方案和分析

    缓存穿透 缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力. (查询一个必然不存在的数据.比如文章表,查询一个不存 ...

  5. 【高并发简单解决方案】redis缓存队列+mysql 批量入库+php离线整合

    原文出处: 崔小拽 需求背景:有个调用统计日志存储和统计需求,要求存储到mysql中:存储数据高峰能达到日均千万,瓶颈在于直接入库并发太高,可能会把mysql干垮. 问题分析 思考:应用网站架构的衍化 ...

  6. 高并发下redis缓存穿透问题解决方案

    一.使用场景 我们在日常的开发中,经常会遇到查询数据列表的问题,有些数据是不经常变化的,如果想做一下优化,在提高查询的速度的同时减轻数据库的压力,那么redis缓存绝对是一个好的解决方案. 二.需求 ...

  7. Redis缓存雪崩,缓存穿透,热点key解决方案和分析

    缓存穿透 缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力. (查询一个必然不存在的数据.比如文章表,查询一个不存 ...

  8. Redis缓存穿透、缓存雪崩、redis并发问题 并发竞争key的解决方案 (阿里)

    阿里的人问我 缓存雪崩(大量数据在同一时间过期了)了如何处理,缓存击穿了如何处理,回答的很烂,做了总结: 把redis作为缓存使用已经是司空见惯,但是使用redis后也可能会碰到一系列的问题,尤其是数 ...

  9. redis缓存穿透穿透解决方案-布隆过滤器

    redis缓存穿透穿透解决方案-布隆过滤器 我们先来看一段代码 cache_key = "id:1" cache_value = GetValueFromRedis(cache_k ...

随机推荐

  1. 2019.01.24 bzoj3125: CITY(轮廓线dp)

    传送门 题意简述:给一个n∗mn*mn∗m的网格图,有的格子不能走,有的格子只能竖着走,有的格子只能横着走,问用一条回路覆盖所有能走的格子的方案数. 思路: 就是简单的轮廓线dpdpdp加了一点限制而 ...

  2. 第1章 Python数据模型

    #<流畅的Python>读书笔记 # 第一部分 序幕 # 第1章 Python数据模型 # 魔术方法(magic method)是特殊方法的昵称.于是乎,特殊方法也叫双下方法(dunder ...

  3. ssh scp 加端口

    scp -P one-infrastructure-api.tar.gz console@172.31.16.2:/root/ ssh -p console@172.31.16.2

  4. vba遗传算法之非一致性突变

    http://www.docin.com/p-959323141-f4.html Sub 非一致性变异() Dim totalGenerate As Integer, currentGenerate ...

  5. go语言判断末尾不同的长字符串的方法

    判断两种末尾不同的长字符串,在使用正则表达式的基础上,进一步利用好字符串的方法,最后成功对问题进行解决. package utils import ( "io/ioutil" &q ...

  6. es5数组的新方法

    1.every方法 //逻辑判断返回值为一个Boolean值 every方法就是每一个返回函数的返回值都是true的时候,才为true,否则为false var arr=[1,2,5,88,5,555 ...

  7. 怎么让挨着的两input之间没有空隙?

    问题:在写选项卡的时候,用input做点击事件的切换时,两个input之间会有空隙,使用margin/padding为0或者为负数依旧如此  → 解决:我脑慢的最后才想到是空格影响的,呵呵呵.

  8. 10-padding(内边距)

    padding padding:就是内边距的意思,它是边框到内容之间的距离 另外padding的区域是有背景颜色的.并且背景颜色和内容的颜色一样.也就是说background-color这个属性将填充 ...

  9. Ng第十四课:降维(Dimensionality Reduction)

    14.1  动机一:数据压缩 14.2  动机二:数据可视化 14.3  主成分分析问题 14.4  主成分分析算法 14.5  选择主成分的数量 14.6  重建的压缩表示 14.7  主成分分析法 ...

  10. 最顶尖的12个IT技能

    这差不多是十年前得了,看看今天这些东西哪些死掉了,哪些成长茁壮了,又能有哪些启示. KevinScott是谷歌公司的高级技术经理,也是美国计算机协会专业与教育委 员会的创始成员,他说:“我在硅谷看到的 ...