10行代码爬取全国所有A股/港股/新三板上市公司信息
摘要: 我们平常在浏览网页中会遇到一些表格型的数据信息,除了表格本身体现的内容以外,可能还想透过表格背后再挖掘些有意思或者有价值的信息。这时,可用python爬虫来实现。本文采用pandas库中的read_html方法来快速准确地抓取网页中的表格数据。
由于本文中含有一些超链接,微信中无法直接打开,所以建议点击最左下角阅读原文阅读,体验更好,也可以复制链接到浏览器打开:
https://www.makcyun.top/web_scraping_withpython2.html
本文知识点:
Table型表格抓取
DataFrame.read_html函数使用
MySQL数据库存储
Navicat数据库的使用
1. table型表格
我们在网页上会经常看到这样一些表格,比如:
QS2018世界大学排名:
uploading-image-522548.png
财富世界500强企业排名:
uploading-image-571806.png
IMDB世界电影票房排行榜:
uploading-image-38035.png
中国A股上市公司信息:
uploading-image-513503.png
它们除了都是表格以外,还一个共同点就是当点击右键-定位时,可以看到它们都是table类型的表格。
uploading-image-686147.png
uploading-image-65402.png
uploading-image-862581.png
uploading-image-726051.png
从中可以看到table类型的表格网页结构大致如下:
1<table class="..." id="...">
2 <thead>
3 <tr>
4 <th>...</th>
5 </tr>
6 </thead>
7 <tbody>
8 <tr>
9 <td>...</td>
10 </tr>
11 <tr>...</tr>
12 <tr>...</tr>
13 <tr>...</tr>
14 <tr>...</tr>
15 ...
16 <tr>...</tr>
17 <tr>...</tr>
18 <tr>...</tr>
19 <tr>...</tr>
20 </tbody>
21</table>
先来简单解释一下上文出现的几种标签含义:
1<table> : 定义表格
2<thead> : 定义表格的页眉
3<tbody> : 定义表格的主体
4<tr> : 定义表格的行
5<th> : 定义表格的表头
6<td> : 定义表格单元
这样的表格数据,就可以利用pandas模块里的read_html函数方便快捷地抓取下来。下面我们就来操作一下。
2. 快速抓取
下面以中国上市公司信息这个网页中的表格为例,感受一下read_html函数的强大之处。
1import pandas as pd
2import csv
3
4for i in range(1,178): # 爬取全部177页数据
5 url = 'http://s.askci.com/stock/a/?reportTime=2017-12-31&pageNum=%s' % (str(i))
6 tb = pd.read_html(url)[3] #经观察发现所需表格是网页中第4个表格,故为[3]
7 tb.to_csv(r'1.csv', mode='a', encoding='utf_8_sig', header=1, index=0)
8 print('第'+str(i)+'页抓取完成')
uploading-image-806178.png
只需不到十行代码,1分钟左右就可以将全部178页共3535家A股上市公司的信息干净整齐地抓取下来。比采用正则表达式、xpath这类常规方法要省心省力地多。如果采取人工一页页地复制粘贴到excel中,就得操作到猴年马月去了。
上述代码除了能爬上市公司表格以外,其他几个网页的表格都可以爬,只需做简单的修改即可。因此,可作为一个简单通用的代码模板。但是,为了让代码更健壮更通用一些,接下来,以爬取177页的A股上市公司信息为目标,讲解一下详细的代码实现步骤。
3. 详细代码实现
3.1. read_html函数
先来了解一下read_html函数的api:
1pandas.read_html(io, match='.+', flavor=None, header=None, index_col=None, skiprows=None, attrs=None, parse_dates=False, tupleize_cols=None, thousands=', ', encoding=None, decimal='.', converters=None, na_values=None, keep_default_na=True, displayed_only=True)
2
3常用的参数:
4io:可以是url、html文本、本地文件等;
5flavor:解析器;
6header:标题行;
7skiprows:跳过的行;
8attrs:属性,比如 attrs = {'id': 'table'};
9parse_dates:解析日期
10
11注意:返回的结果是**DataFrame**组成的**list**。
参考:
1 http://pandas.pydata.org/pandas-docs/stable/io.html#io-read-html
2 http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_html.html
3.2. 分析网页url
首先,观察一下中商情报网第1页和第2页的网址:
1 http://s.askci.com/stock/a/?reportTime=2017-12-31&pageNum=1#QueryCondition
2 http://s.askci.com/stock/a/?reportTime=2017-12-31&pageNum=2#QueryCondition
可以发现,只有pageNum的值随着翻页而变化,所以基本可以断定pageNum=1代表第1页,pageNum=10代表第10页,以此类推。这样比较容易用for循环构造爬取的网址。
试着把#QueryCondition删除,看网页是否同样能够打开,经尝试发现网页依然能正常打开,因此在构造url时,可以使用这样的格式:
http://s.askci.com/stock/a/?reportTime=2017-12-31&pageNum=i
再注意一下其他参数:
a:表示A股,把a替换为h,表示港股;把a替换为xsb,则表示新三板。那么,在网址分页for循环外部再加一个for循环,就可以爬取这三个股市的股票了。
3.3. 定义函数
将整个爬取分为网页提取、内容解析、数据存储等步骤,依次建立相应的函数。
1# 网页提取函数
2def get_one_page(i):
3 try:
4 headers = {
5 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36'
6 }
7 paras = {
8 'reportTime': '2017-12-31',
9 #可以改报告日期,比如2018-6-30获得的就是该季度的信息
10 'pageNum': i #页码
11 }
12 url = 'http://s.askci.com/stock/a/?' + urlencode(paras)
13 response = requests.get(url,headers = headers)
14 if response.status_code == 200:
15 return response.text
16 return None
17 except RequestException:
18 print('爬取失败')
19
20# beatutiful soup解析然后提取表格
21def parse_one_page(html):
22 soup = BeautifulSoup(html,'lxml')
23 content = soup.select('#myTable04')[0] #[0]将返回的list改为bs4类型
24 tbl = pd.read_html(content.prettify(),header = 0)[0]
25 # prettify()优化代码,[0]从pd.read_html返回的list中提取出DataFrame
26
27 tbl.rename(columns = {'序号':'serial_number', '股票代码':'stock_code', '股票简称':'stock_abbre', '公司名称':'company_name', '省份':'province', '城市':'city', '主营业务收入(201712)':'main_bussiness_income', '净利润(201712)':'net_profit', '员工人数':'employees', '上市日期':'listing_date', '招股书':'zhaogushu', '公司财报':'financial_report', '行业分类':'industry_classification', '产品类型':'industry_type', '主营业务':'main_business'},inplace = True)
28
29 print(tbl)
30 # return tbl
31 # rename将表格15列的中文名改为英文名,便于存储到mysql及后期进行数据分析
32 # tbl = pd.DataFrame(tbl,dtype = 'object') #dtype可统一修改列格式为文本
33
34# 主函数
35def main(page):
36 for i in range(1,page): # page表示提取页数
37 html = get_one_page(i)
38 parse_one_page(html)
39
40# 单进程
41if __name__ == '__main__':
42 main(178) #共提取n页
上面两个函数相比于快速抓取的方法代码要多一些,如果需要抓的表格很少或只需要抓一次,那么推荐快速抓取法。如果页数比较多,这种方法就更保险一些。解析函数用了BeautifulSoup和css选择器,这种方法定位提取表格所在的id为#myTable04的table代码段,更为准确。
3.4. 存储到MySQL
接下来,我们可以将结果保存到本地csv文件,也可以保存到MySQL数据库中。这里为了练习一下MySQL,因此选择保存到MySQL中。
首先,需要先在数据库建立存放数据的表格,这里命名为listed_company。代码如下:
1 import pymysql
2
3 def generate_mysql():
4 conn = pymysql.connect(
5 host='localhost', # 本地服务器
6 user='root',
7 password='******', # 你的数据库密码
8 port=3306, # 默认端口
9 charset = 'utf8',
10 db = 'wade')
11 cursor = conn.cursor()
12
13 sql = 'CREATE TABLE IF NOT EXISTS listed_company2 (serial_number INT(30) NOT NULL,stock_code INT(30) ,stock_abbre VARCHAR(30) ,company_name VARCHAR(30) ,province VARCHAR(30) ,city VARCHAR(30) ,main_bussiness_income VARCHAR(30) ,net_profit VARCHAR(30) ,employees INT(30) ,listing_date DATETIME(0) ,zhaogushu VARCHAR(30) ,financial_report VARCHAR(30) , industry_classification VARCHAR(255) ,industry_type VARCHAR(255) ,main_business VARCHAR(255) ,PRIMARY KEY (serial_number))'
14 # listed_company是要在wade数据库中建立的表,用于存放数据
15
16 cursor.execute(sql)
17 conn.close()
18
19 generate_mysql()
上述代码定义了generate_mysql()函数,用于在MySQL中wade数据库下生成一个listed_company的表。表格包含15个列字段。根据每列字段的属性,分别设置为INT整形(长度为30)、VARCHAR字符型(长度为30) 、DATETIME(0) 日期型等。
在Navicat中查看建立好之后的表格:
uploading-image-471134.png
uploading-image-54744.png
接下来就可以往这个表中写入数据,代码如下:
1 import pymysql
2 from sqlalchemy import create_engine
3
4 def write_to_sql(tbl, db = 'wade'):
5 engine = create_engine('mysql+pymysql://root:******@localhost:3306/{0}?charset=utf8'.format(db))
6 # db = 'wade'表示存储到wade这个数据库中,root后面的*是密码
7 try:
8 tbl.to_sql('listed_company',con = engine,if_exists='append',index=False)
9 # 因为要循环网页不断数据库写入内容,所以if_exists选择append,同时该表要有表头,parse_one_page()方法中df.rename已设置
10 except Exception as e:
11 print(e)
以上就完成了单个页面的表格爬取和存储工作,接下来只要在main()函数进行for循环,就可以完成所有总共178页表格的爬取和存储,完整代码如下:
1import requests
2import pandas as pd
3from bs4 import BeautifulSoup
4from lxml import etree
5import time
6import pymysql
7from sqlalchemy import create_engine
8from urllib.parse import urlencode # 编码 URL 字符串
9
10start_time = time.time() #计算程序运行时间
11
12def get_one_page(i):
13 try:
14 headers = {
15 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36'
16 }
17 paras = {
18 'reportTime': '2017-12-31',
19 #可以改报告日期,比如2018-6-30获得的就是该季度的信息
20 'pageNum': i #页码
21 }
22 url = 'http://s.askci.com/stock/a/?' + urlencode(paras)
23 response = requests.get(url,headers = headers)
24 if response.status_code == 200:
25 return response.text
26 return None
27 except RequestException:
28 print('爬取失败')
29
30
31def parse_one_page(html):
32 soup = BeautifulSoup(html,'lxml')
33 content = soup.select('#myTable04')[0] #[0]将返回的list改为bs4类型
34 tbl = pd.read_html(content.prettify(),header = 0)[0]
35 # prettify()优化代码,[0]从pd.read_html返回的list中提取出DataFrame
36 tbl.rename(columns = {'序号':'serial_number', '股票代码':'stock_code', '股票简称':'stock_abbre', '公司名称':'company_name', '省份':'province', '城市':'city', '主营业务收入(201712)':'main_bussiness_income', '净利润(201712)':'net_profit', '员工人数':'employees', '上市日期':'listing_date', '招股书':'zhaogushu', '公司财报':'financial_report', '行业分类':'industry_classification', '产品类型':'industry_type', '主营业务':'main_business'},inplace = True)
37
38 # print(tbl)
39 return tbl
40 # rename将中文名改为英文名,便于存储到mysql及后期进行数据分析
41 # tbl = pd.DataFrame(tbl,dtype = 'object') #dtype可统一修改列格式为文本
42
43def generate_mysql():
44 conn = pymysql.connect(
45 host='localhost',
46 user='root',
47 password='******',
48 port=3306,
49 charset = 'utf8',
50 db = 'wade')
51 cursor = conn.cursor()
52
53 sql = 'CREATE TABLE IF NOT EXISTS listed_company (serial_number INT(20) NOT NULL,stock_code INT(20) ,stock_abbre VARCHAR(20) ,company_name VARCHAR(20) ,province VARCHAR(20) ,city VARCHAR(20) ,main_bussiness_income VARCHAR(20) ,net_profit VARCHAR(20) ,employees INT(20) ,listing_date DATETIME(0) ,zhaogushu VARCHAR(20) ,financial_report VARCHAR(20) , industry_classification VARCHAR(20) ,industry_type VARCHAR(100) ,main_business VARCHAR(200) ,PRIMARY KEY (serial_number))'
54 # listed_company是要在wade数据库中建立的表,用于存放数据
55
56 cursor.execute(sql)
57 conn.close()
58
59
60def write_to_sql(tbl, db = 'wade'):
61 engine = create_engine('mysql+pymysql://root:******@localhost:3306/{0}?charset=utf8'.format(db))
62 try:
63 # df = pd.read_csv(df)
64 tbl.to_sql('listed_company2',con = engine,if_exists='append',index=False)
65 # append表示在原有表基础上增加,但该表要有表头
66 except Exception as e:
67 print(e)
68
69
70def main(page):
71 generate_mysql()
72 for i in range(1,page):
73 html = get_one_page(i)
74 tbl = parse_one_page(html)
75 write_to_sql(tbl)
76
77# # 单进程
78if __name__ == '__main__':
79 main(178)
80
81 endtime = time.time()-start_time
82 print('程序运行了%.2f秒' %endtime)
83
84
85# 多进程
86# from multiprocessing import Pool
87# if __name__ == '__main__':
88# pool = Pool(4)
89# pool.map(main, [i for i in range(1,178)]) #共有178页
90
91# endtime = time.time()-start_time
92# print('程序运行了%.2f秒' %(time.time()-start_time))
最终,A股所有3535家企业的信息已经爬取到mysql中,如下图:
uploading-image-363968.png
除了A股,还可以顺便再把港股和新三板所有的上市公司也爬了。后期,将会对爬取的数据做一下简单的数据分析。
最后,需说明不是所有表格都可以用这种方法爬取,比如这个网站中的表格,表面是看起来是表格,但在html中不是前面的table格式,而是list列表格式。这种表格则不适用read_html爬取。得用其他的方法,比如selenium,以后再进行介绍。
uploading-image-737366.png
本文完。
来源于https://mp.weixin.qq.com/s/kE5LU_8UDPgxv1v4rw9sbA
10行代码爬取全国所有A股/港股/新三板上市公司信息的更多相关文章
- 40行代码爬取猫眼电影TOP100榜所有信息
主要内容: 一.基础爬虫框架的三大模块 二.完整代码解析及效果展示 1️⃣ 基础爬虫框架的三大模块 1.HTML下载器:利用requests模块下载HTML网页. 2.HTML解析器:利用re正则表 ...
- 80 行代码爬取豆瓣 Top250 电影信息并导出到 CSV 及数据库
一.下载页面并处理 二.提取数据 观察该网站 html 结构 可知该页面下所有电影包含在 ol 标签下.每个 li 标签包含单个电影的内容. 使用 XPath 语句获取该 ol 标签 在 ol 标签中 ...
- 33行代码爬取妹子图片(bs4+urllib)
from bs4 import BeautifulSoupimport urllib2import urllibimport lxmlimport os def get_imgs(): image_c ...
- python爬虫学习之爬取全国各省市县级城市邮政编码
实例需求:运用python语言在http://www.ip138.com/post/网站爬取全国各个省市县级城市的邮政编码,并且保存在excel文件中 实例环境:python3.7 requests库 ...
- 如何用Python统计《论语》中每个字的出现次数?10行代码搞定--用计算机学国学
编者按: 上学时听过山师王志民先生一场讲座,说每个人不论干什么,都应该学习国学(原谅我学了计算机专业)!王先生讲得很是吸引我这个工科男,可能比我的后来的那些同学听课还要认真些,当然一方面是兴趣.一方面 ...
- 《zw版·Halcon-delphi系列原创教程》简单的令人发指,只有10行代码的车牌识别脚本
<zw版·Halcon-delphi系列原创教程>简单的令人发指,只有10行代码的车牌识别脚本 简单的令人发指,只有10行代码的车牌识别脚本 人脸识别.车牌识别是opencv当中 ...
- [Unity Editor]10行代码搞定Hierarchy排序
在日常的工作和研究中,当给我们的场景摆放过多的物件的时候,Hierarchy面板就会变得杂乱不堪.比如这样: 过多的层次结构充斥在里面,根层的物件毫无序列可言,整个层次面板显示非常的杂乱不堪,如 ...
- 10行代码搞定移动web端自定义tap事件
发发牢骚 移动web端里摸爬滚打这么久踩了不少坑,有一定移动web端经验的同学一定被click困扰过.我也不列外.一路走来被虐的不行,fastclick.touchend.iscroll什么的都用过, ...
- delphi 牛逼 了 app (已在软件界掀起波澜)10分钟10行代码做出让人惊叹的程序
(已在软件界掀起波澜)10分钟10行代码做出让人惊叹的程序 http://v.qq.com/x/page/m0328h73bs7.html?ptag=bbs_csdn_net
随机推荐
- [小技巧]Filezilla无法确定拖放操作目标,由于shell未正确安装__解决办法
重装系统及相关软件之后,用filezilla拖拽ftp上的文件到桌面的时候,提示"无法确定拖放操作目标......" 解决办法很简单,执行如下几步就OK了 ①在CMD中,进入Fil ...
- 模版方法模式(Template Method)
1.概念 在模板模式(Template Pattern)中,一个抽象类公开定义了执行它的方法的方式/模板.它的子类可以按需要重写方法实现,但调用将以抽象类中定义的方式进行.这种类型的设计模式属于行为型 ...
- 本地服务器搭建服务:mysql
话不多少,mysql的优劣不再此讨论. 1.官网地址:https://dev.mysql.com/downloads/mysql/ 下载页面直接 No thanks,just start my do ...
- (二)收集的MongoDB命令集合
一:针对整个数据库的 1."show dbs" 命令可以显示所有数据的列表. 2. "db" 命令可以显示当前数据库对象或集合. 3."use&quo ...
- 高并发情况下,如何生成分布式全局id
1.使用UUID生成全局id,不占用宽带 2.基于数据库自增或者序列生成全局id,占用宽带,设置自增步长实现集群,但可扩展性差 3.基于redis生成全局id,占用宽度,设置自增步长实现集群,性能比数 ...
- 微信小程序< 1 > ~ Hello 微信小程序
简介 微信小程序,最近声音比较大,开始慢慢学习一下这个小东西,从安装开发工具开始吧,不会JS,学起来会不会很吃力呢? 注册账号 参考官方网站 开发工具 1.微信Web开发工具 2.官方下载地址,针对自 ...
- PHP学习目标
课程阶段学习目标 阶段一: 目标:能够使用DIV+CSS布局出任意的网页页面 说明:根据PSD图设计,使用DIV+CSS布局符合WEB标准.多浏览器兼容的网页,能建立网站制作所需要的模板 阶段二: 目 ...
- 排错-tcpreplay回放错误:send() [218] Message too long (errno = 90)
排错-tcpreplay回放错误:send() [218] Message too long (errno = 90) by:授客 QQ:1033553122 问题描述: tcpreplay回放.pc ...
- aop 拦截含有特定注解的类
1.功能点:使用aop拦截含有自定义注解的类 1.自定义注解 package com.zhuanche.common.dingdingsync; import java.lang.annotation ...
- Cordova 8 架构使用sqlite - 谢厂节的博客 - 博客频道 - CSDN.NET - Google Chrome
Cordova 8 架构使用sqlite 标签: androidcordova 2015-07-16 16:41 4302人阅读 评论(0) 收藏 举报 分类: IONIC/Cordova(18) ...