题目大意: 给你n个点求最小矩形覆盖。

思路:枚举凸包上的边然后,旋转卡壳找三个相应的为止把矩形的四个点求出来。

 #include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int,int>
#define piii pair<int, pair<int,int>> using namespace std; const int N=1e5 + ;
const int M=1e4 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, cnt; int dcmp(double x) {
if(fabs(x) < eps) return ;
else return x < ? - : ;
} struct Point {
double x, y;
Point(double x = , double y = ) : x(x), y(y) { } }p[N], ch[N]; typedef Point Vector; Point operator + (Vector A, Vector B) {return Point(A.x + B.x, A.y + B.y);}
Point operator - (Vector A, Vector B) {return Point(A.x - B.x, A.y - B.y);}
Point operator * (Vector A, double p) {return Point(A.x * p, A.y * p);}
Point operator / (Vector A, double p) {return Point(A.x / p, A.y / p);}
bool operator < (const Vector &A, const Vector &B) {return A.y < B.y || (A.y == B.y && A.x < B.x);}
bool operator == (const Vector &A, const Point &B) {return dcmp(A.x - B.x) == && dcmp(A.y - B.y) == ;}
double Dot(Vector A, Vector B) {return A.x * B.x + A.y * B.y;}
double Length(Vector A) {return sqrt(Dot(A, A));}
double Angle(Vector A, Vector B) {return acos(Dot(A, B) / Length(A) / Length(B));}
double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;}
double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} Vector Rotate(Vector A, double rad) {
return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
} Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
} double dis(Point A, Point B) {
return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));
}
int ConvexHull(Point *p, int n, Point *ch) {
sort(p, p + n);
int m = ;
for(int i = ; i < n; i++) {
while(m > && dcmp(Cross(ch[m - ] - ch[m - ], p[i] - ch[m - ])) <= ) m--;
ch[m++] = p[i];
} int k = m;
for(int i = n - ; i >= ; i--) {
while(m > k && dcmp(Cross(ch[m - ] - ch[m - ], p[i] - ch[m - ])) <= ) m--;
ch[m++] = p[i];
}
return m;
} Point vec[], vec2[]; int main() {
scanf("%d", &n);
for(int i = ; i < n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y);
cnt = ConvexHull(p, n, ch); cnt--;
for(int i = ; i < cnt; i++) {
ch[cnt + i] = ch[i];
} int pos1 = , pos2 = , pos3 = ;
double ans = inf;
for(int i = ; i < cnt; i++) {
while(abs(Cross(ch[i] - ch[pos1 + ], ch[i + ] - ch[pos1 + ])) > abs(Cross(ch[i] - ch[pos1], ch[i + ] - ch[pos1])))
pos1++;
while(Dot(ch[i + ] - ch[i], ch[pos2 + ] - ch[i]) > Dot(ch[i + ] - ch[i], ch[pos2] - ch[i]))
pos2++;
pos3 = max(pos3, pos1);
while(Dot(ch[i + ] - ch[i], ch[pos3 + ] - ch[i]) < Dot(ch[i + ] - ch[i], ch[pos3] - ch[i]))
pos3++;
Vector k1 = ch[i + ] - ch[i];
Vector k2 = Rotate(k1, PI / );
Point p1 = GetLineIntersection(ch[i], k1, ch[pos2], k2);
Point p2 = GetLineIntersection(ch[i], k1, ch[pos3], k2);
Point p3 = GetLineIntersection(ch[pos1], k1, ch[pos2], k2);
Point p4 = GetLineIntersection(ch[pos1], k1, ch[pos3], k2);
double ret = dis(p1, p2) * dis(p1, p3);
if(ret < ans) {
ans = ret;
vec[] = p1;
vec[] = p2;
vec[] = p3;
vec[] = p4;
}
} ConvexHull(vec, , vec2);
printf("%.5f\n", ans);
for(int i = ; i < ; i++) {
printf("%.5f %.5f\n", vec2[i].x, vec2[i].y);
}
return ;
}
/*
*/

bzoj 1185的更多相关文章

  1. 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)

    题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...

  2. BZOJ 1185 最小矩形覆盖

    Description Input Output Sample Input Sample Output HINT 其实这题就是一道旋转卡壳的裸题,但是我的精度萎了.直接上hzwer的代码吧... #i ...

  3. BZOJ:1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...

  4. BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solve ...

  5. ●BZOJ 1185 [HNOI2007]最小矩形覆盖

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解: 计算几何,凸包,旋转卡壳 结论:矩形的某一条边在凸包的一条边所在的直线上. ( ...

  6. bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...

  7. BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 题意: 给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积. 题解: 先找出凸 ...

  8. BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子

    来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...

  9. bzoj 1185 最小矩形覆盖 —— 旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 枚举一条边,维护上.左.右方的点: 上方点到这条边距离最远,所以用叉积求面积维护: 左 ...

  10. bzoj 1185 [HNOI2007]最小矩形覆盖 凸包+旋转卡壳

    题目大意 用最小矩形覆盖平面上所有的点 分析 有一结论:最小矩形中有一条边在凸包的边上,不然可以旋转一个角度让面积变小 简略证明 我们逆时针枚举一条边 用旋转卡壳维护此时最左,最右,最上的点 注意 注 ...

随机推荐

  1. 【题解】 [ZJOI2008] 泡泡堂(贪心/二分图/动态规划)

    懒得复制,戳我戳我 Solution: 就是有一个贪心策略:(以下假设使\(A\)队分数更高) \(First:\)比较两个分值的最小值,如果\(A\)最小分比\(B\)最小分大就直接比较两个最小的, ...

  2. Spring Boot -Shiro配置多Realm

    核心类简介 xxxToken:用户凭证 xxxFilter:生产token,设置登录成功,登录失败处理方法,判断是否登录连接等 xxxRealm:依据配置的支持Token来认证用户信息,授权用户权限 ...

  3. Dist

    Description 数据范围:\(1<=n<=10^5,1<=k<=18,1<=k_i<=10^7,\sum |s_i|<=3*10^5\) Soluti ...

  4. java 7 升级后,控制面板里找不到java图标了

    如果电脑里只装了jre的情况下,好像从java 7 update 9开始,通过java自动升级程序完成升级后,控制面板里的java图标就不见了. 只好重新从java.sun.com上下载最新版的jre ...

  5. bzoj千题计划291:bzoj3640: JC的小苹果

    http://www.lydsy.com/JudgeOnline/problem.php?id=3640 dp[i][j] 表示i滴血到达j的概率 dp[i][j] = Σ dp[i+val[i]][ ...

  6. CF876 F 思维 枚举

    给你n个数,问有几个区间满足,区间内或操作大于区间内的任意数. 首先可以知道,两数或操作的结果必定不会小于两者间的最大值,也就是说对于一个区间中,不合法的状态只有两值或相等.那么我们可以考虑枚举每个数 ...

  7. 蓝桥杯 大臣的旅费_树的最长度_两次DFS

    #include <iostream> #include <cstdio> #include <cstdlib> #include <algorithm> ...

  8. ubuntu 环境下pycharm的 安装与激活教程 以及错误解决方法

    1. 基本安装: 1.1 打开Ubuntu的应用市场,并在搜索栏搜索pycharm,结果如下图所示 1.2 选择pro版本进行安装,结果如下图所示: 1.3打开安装后的pycharm,如果出现下图所示 ...

  9. php拾遗: 类型约束

    突然间什么都不想干,感觉就像来大姨夫一样..但是又不能断了每个工作日都写博客的习惯..所以今天水一下吧. PHP用了快2年了,但是这东西竟然第一次看到,突然间,觉得自己有掉回战五渣的行列了.翻开官方文 ...

  10. HDU 1501 Zipper 字符串

    题目大意:输入有一个T,表示有T组测试数据,然后输入三个字符串,问第三个字符串能否由第一个和第二个字符串拼接而来,拼接的规则是第一个和第二个字符串在新的字符串中的前后的相对的顺序不能改变,问第三个字符 ...