bzoj 1185
题目大意: 给你n个点求最小矩形覆盖。
思路:枚举凸包上的边然后,旋转卡壳找三个相应的为止把矩形的四个点求出来。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int,int>
#define piii pair<int, pair<int,int>> using namespace std; const int N=1e5 + ;
const int M=1e4 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, cnt; int dcmp(double x) {
if(fabs(x) < eps) return ;
else return x < ? - : ;
} struct Point {
double x, y;
Point(double x = , double y = ) : x(x), y(y) { } }p[N], ch[N]; typedef Point Vector; Point operator + (Vector A, Vector B) {return Point(A.x + B.x, A.y + B.y);}
Point operator - (Vector A, Vector B) {return Point(A.x - B.x, A.y - B.y);}
Point operator * (Vector A, double p) {return Point(A.x * p, A.y * p);}
Point operator / (Vector A, double p) {return Point(A.x / p, A.y / p);}
bool operator < (const Vector &A, const Vector &B) {return A.y < B.y || (A.y == B.y && A.x < B.x);}
bool operator == (const Vector &A, const Point &B) {return dcmp(A.x - B.x) == && dcmp(A.y - B.y) == ;}
double Dot(Vector A, Vector B) {return A.x * B.x + A.y * B.y;}
double Length(Vector A) {return sqrt(Dot(A, A));}
double Angle(Vector A, Vector B) {return acos(Dot(A, B) / Length(A) / Length(B));}
double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;}
double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} Vector Rotate(Vector A, double rad) {
return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
} Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
} double dis(Point A, Point B) {
return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));
}
int ConvexHull(Point *p, int n, Point *ch) {
sort(p, p + n);
int m = ;
for(int i = ; i < n; i++) {
while(m > && dcmp(Cross(ch[m - ] - ch[m - ], p[i] - ch[m - ])) <= ) m--;
ch[m++] = p[i];
} int k = m;
for(int i = n - ; i >= ; i--) {
while(m > k && dcmp(Cross(ch[m - ] - ch[m - ], p[i] - ch[m - ])) <= ) m--;
ch[m++] = p[i];
}
return m;
} Point vec[], vec2[]; int main() {
scanf("%d", &n);
for(int i = ; i < n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y);
cnt = ConvexHull(p, n, ch); cnt--;
for(int i = ; i < cnt; i++) {
ch[cnt + i] = ch[i];
} int pos1 = , pos2 = , pos3 = ;
double ans = inf;
for(int i = ; i < cnt; i++) {
while(abs(Cross(ch[i] - ch[pos1 + ], ch[i + ] - ch[pos1 + ])) > abs(Cross(ch[i] - ch[pos1], ch[i + ] - ch[pos1])))
pos1++;
while(Dot(ch[i + ] - ch[i], ch[pos2 + ] - ch[i]) > Dot(ch[i + ] - ch[i], ch[pos2] - ch[i]))
pos2++;
pos3 = max(pos3, pos1);
while(Dot(ch[i + ] - ch[i], ch[pos3 + ] - ch[i]) < Dot(ch[i + ] - ch[i], ch[pos3] - ch[i]))
pos3++;
Vector k1 = ch[i + ] - ch[i];
Vector k2 = Rotate(k1, PI / );
Point p1 = GetLineIntersection(ch[i], k1, ch[pos2], k2);
Point p2 = GetLineIntersection(ch[i], k1, ch[pos3], k2);
Point p3 = GetLineIntersection(ch[pos1], k1, ch[pos2], k2);
Point p4 = GetLineIntersection(ch[pos1], k1, ch[pos3], k2);
double ret = dis(p1, p2) * dis(p1, p3);
if(ret < ans) {
ans = ret;
vec[] = p1;
vec[] = p2;
vec[] = p3;
vec[] = p4;
}
} ConvexHull(vec, , vec2);
printf("%.5f\n", ans);
for(int i = ; i < ; i++) {
printf("%.5f %.5f\n", vec2[i].x, vec2[i].y);
}
return ;
}
/*
*/
bzoj 1185的更多相关文章
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
- BZOJ 1185 最小矩形覆盖
Description Input Output Sample Input Sample Output HINT 其实这题就是一道旋转卡壳的裸题,但是我的精度萎了.直接上hzwer的代码吧... #i ...
- BZOJ:1185: [HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1435 Solve ...
- ●BZOJ 1185 [HNOI2007]最小矩形覆盖
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解: 计算几何,凸包,旋转卡壳 结论:矩形的某一条边在凸包的一条边所在的直线上. ( ...
- bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...
- BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 题意: 给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积. 题解: 先找出凸 ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子
来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...
- bzoj 1185 最小矩形覆盖 —— 旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 枚举一条边,维护上.左.右方的点: 上方点到这条边距离最远,所以用叉积求面积维护: 左 ...
- bzoj 1185 [HNOI2007]最小矩形覆盖 凸包+旋转卡壳
题目大意 用最小矩形覆盖平面上所有的点 分析 有一结论:最小矩形中有一条边在凸包的边上,不然可以旋转一个角度让面积变小 简略证明 我们逆时针枚举一条边 用旋转卡壳维护此时最左,最右,最上的点 注意 注 ...
随机推荐
- 【刷题】BZOJ 3252 攻略
Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏<XX 半岛>,这款游戏有n个场景(s ...
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
- stm32 修改工作频率
@2018-5-11 10:04:22 修改外部晶振大小 stm32f4xx系列是在文件<stm32f4xx.h>中的宏定义 #define HSE_VALUE (uint32_t)800 ...
- 【洛谷P1991】无线通讯网
题目大意:给定一个 N 个顶点的完全图,边有边权,现在要求使得图中所有顶点联通的情况下,第 M-1 大的边最小值是多少. 题解:所有点联通的最小要求是所有点和连接这些点的边构成原图的一棵生成树,那么问 ...
- Qt ------ UDP发送不了或接收不到问题
1.禁用不需要的网卡,比如禁用虚拟机网卡. 2.向所有网卡广播数据 /* * 直接调用 QUdpSocket 的 writeDatagram() 函数发送数据,如果有多张网卡(装了虚拟机会增加网卡), ...
- 小朋友学Linux<一>基础篇
Linux最基础之<小朋友也能学会Linux>... 1.Linux 知识积累: Linux 英文解释为 Linux is not Unix.学习Linux必须要熟练使用的操作系统是Cen ...
- Java基础-Java中的堆内存和离堆内存机制
Java基础-Java中的堆内存和离堆内存机制 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- C语言复习---零散补充
一:double和float使用scanf获取数据 printf输出float和double都可以用%f,double还可以用%lf. 2 scanf输入float用%f,double输入用%lf,不 ...
- ngx_lua_API 指令详解(六)ngx.thread.spawn、ngx.thread.wait、ngx.thread.kill介绍
摘要:通过lua-nginx-module中的ngx.thread同时执行多个任务. ngx_lua中访问多个第三方服务 ngx_lua中提供了ngx.socket API,可以方便的访问第三方网络服 ...
- HTML5 JavaScript实现图片文字识别与提取
8月底的时候,@阿里巴巴 推出了一款名为“拯救斯诺克”的闯关游戏,作为前端校园招聘的热身,做的相当不错,让我非常喜欢.后来又传出了一条消息,阿里推出了A-star(阿里星)计划,入职阿里的技术培训生, ...