小猴打架(luogu4430)(数论+生成树计数)
一开始森林里面有\(N\)只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友。每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友。经过\(N-1\)次打架之后,整个森林的小猴都会成为好朋友。 现在的问题是,总共有多少种不同的打架过程。 比如当\(N=3\)时,就\(\{1-2,1-3\}\{1-2,2-3\}\{1-3,1-2\}\{1-3,2-3\}\{2-3,1-2\}\{2-3,1-3\}\)六种不同的打架过程。
Input
一个整数N。
Output
一行,方案数\(mod 9999991\)。
Sample Input
4
Sample Output
96
Hint
50%的数据\(N<=10^3\)。 100%的数据\(N<=10^6\)。
题意:
中文题面,不解释
题解:
用矩阵树定理
先得一邻接矩阵\((1)\)
\begin{matrix}
0 & 1 & 1 & \cdots & 1\\
1 & 0 & 1 & \cdots & 1\\
1 & 1 & 0 & \cdots & 1\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
1 & 1 & 1 & \cdots & 0
\end{matrix}
\right|\tag{1}
\]
再得一度数矩阵\((2)\)
\begin{matrix}
N-1 & 0 & 0 & \cdots & 0\\
0 & N-1 & 0 & \cdots & 0\\
0 & 0 & N-1 & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & N-1
\end{matrix}
\right|\tag{2}
\]
\(\{2\}-\{1\}\)得基尔霍夫矩阵\((3)\)
\begin{matrix}
N-1 & -1 & -1 & \cdots & -1\\
-1 & N-1 & -1 & \cdots & -1\\
-1 & -1 & N-1 & \cdots & -1\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
-1 & -1 & -1 & \cdots & N-1
\end{matrix}
\right|\tag{3}
\]
取前\(N-1\)行\(N-1\)列高斯消元,得\((4)\)
\begin{matrix}
1 & 1 & 1 & \cdots & 1\\
0 & N & 0 & \cdots & 0\\
0 & 0 & N & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & N
\end{matrix}
\right|\tag{4}
\]
然后求一下行列式就是答案了:
\(N^{N-2}\)
额,好吧还需要乘一个排列,因为打架的顺序可以不同
所以答案其实是:
\(N^{N-2}(N-1)!\)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll p=9999991;
ll a,ans=1;
int main(){
cin>>a;
for(ll i=1;i<=a-2;++i){
ans*=a;
ans%=p;
}
for(ll i=1;i<=a-1;++i){
ans*=i;
ans%=p;
}
cout<<ans<<endl;
}
小猴打架(luogu4430)(数论+生成树计数)的更多相关文章
- luogu4430 小猴打架
假硕讲了个prufer编码和Caylay公式 我为了证明prufer编码没用 所以用矩阵树定理证明了Caylay公式 让我们用矩阵树定理推一波 首先这个小猴打架最后会打成一棵树,这棵树是N个点的完全图 ...
- P4430 小猴打架
P4430 小猴打架 题目意思就是让你求,在网格图中(任意两点都有边)的生成树的个数(边的顺序不同也算不同的方案). 首先我们考虑一个生成树,由于一定有n-1条边,单单考虑添加边的顺序,根据乘法原理, ...
- BZOJ1430: 小猴打架
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 328 Solved: 234[Submit][Status] Descripti ...
- bzoj 1430: 小猴打架 -- prufer编码
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是 ...
- 【BZOJ 1430】 1430: 小猴打架 (Prufer数列)
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 625 Solved: 452 Description 一开始森林里面有N只互不相 ...
- 洛谷 P4430 小猴打架
洛谷 P4430 小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打 ...
- bzoj 1430: 小猴打架
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 634 Solved: 461[Submit][Status][Discuss] ...
- bzoj 1430 小猴打架 prufer 性质
小猴打架 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 709 Solved: 512[Submit][Status][Discuss] Descri ...
- [bzoj1430]小猴打架_prufer序列
小猴打架 bzoj-1430 题目大意:题目链接. 注释:略. 想法: 我们发现打架的情况就是一棵树. 我们只需要把确定树的形态然后乘以$(n-1)!$表示生成这棵树时边的顺序. 一共$n$个节点我们 ...
随机推荐
- 【C#】解析C#程序集的加载和反射
目录结构: contents structure [+] 程序集 程序集的加载 发现程序集中的类型 反射对类型成员的常规操作 发现类型的成员 创建类型的实例 绑定句柄减少进程的内存消耗 解析自定义特性 ...
- Django的学习(二)————Templates
一.django的模板: 在settings.py的文件中可以看到并设置这个模板. 1.直接映射: 通过建立的文件夹(templates)和文件(html)来映射. <!DOCTYPE html ...
- 深度学习中 epoch,[batch size], iterations概念解释
one epoch:所有的训练样本完成一次Forword运算以及一次BP运算 batch size:一次Forword运算以及BP运算中所需要的训练样本数目,其实深度学习每一次参数的更新所需要损失函数 ...
- IBM X3650 M3/M4的服务器装系统
IBM X3650 M3/M4的服务器一般都有两块以上的硬盘.所以如果没有做RAID,那首先应该做好raid 磁盘阵列.本文装系统的前提是RAID已经做好. 一般安装系统的方式为先在IBM官网下载对应 ...
- Educational Codeforces Round 60 C 思维 + 二分
https://codeforces.com/contest/1117/problem/C 题意 在一个二维坐标轴上给你一个起点一个终点(x,y<=1e9),然后给你一串字符串代表每一秒的风向, ...
- excel中vba将excel中数字和图表输出到word中
参考:https://wenku.baidu.com/view/6c60420ecc175527072208af.html 比如将选区变为图片保存到桌面: Sub 将选区转为图片存到桌面() Dim ...
- querySelectorAll()方法
querySelectorAll()方法 调用的对象包括:Document(文档) DocumentFragment(文档片段) Element(元素) querySelectorAll()方法接收的 ...
- hadoop flume 架构及监控的部署
1 Flume架构解释 Flume概念 Flume是一个分布式 ,可靠的,和高可用的,海量的日志聚合系统 支持在系统中定制各类的数据发送方 用于收集数据 提供简单的数据提取能力 并写入到各种接受方 ...
- hadoop Mapreduce组件介绍
MapReduce原理 MapRedcue采用‘分而治之’的思想,对大规模数据集的操作,分发给一个主节点下的各个分节点共同完成,然后通过整合各个节点的中间结果,得到最终结果.Mapreduce就是任务 ...
- c 语言申明头文件和实现分开简单例子
很多时候,看到很多c函数的声明和实现是分开的.声明放在头文件,实现却放在另一个文件,最后函数被其他文件调用. 下面以简单例子说明. 一.声明部分 /* test.h */ #include <s ...