小猴打架(luogu4430)(数论+生成树计数)
一开始森林里面有\(N\)只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友。每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友。经过\(N-1\)次打架之后,整个森林的小猴都会成为好朋友。 现在的问题是,总共有多少种不同的打架过程。 比如当\(N=3\)时,就\(\{1-2,1-3\}\{1-2,2-3\}\{1-3,1-2\}\{1-3,2-3\}\{2-3,1-2\}\{2-3,1-3\}\)六种不同的打架过程。
Input
一个整数N。
Output
一行,方案数\(mod 9999991\)。
Sample Input
4
Sample Output
96
Hint
50%的数据\(N<=10^3\)。 100%的数据\(N<=10^6\)。
题意:
中文题面,不解释
题解:
用矩阵树定理
先得一邻接矩阵\((1)\)
\begin{matrix}
0 & 1 & 1 & \cdots & 1\\
1 & 0 & 1 & \cdots & 1\\
1 & 1 & 0 & \cdots & 1\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
1 & 1 & 1 & \cdots & 0
\end{matrix}
\right|\tag{1}
\]
再得一度数矩阵\((2)\)
\begin{matrix}
N-1 & 0 & 0 & \cdots & 0\\
0 & N-1 & 0 & \cdots & 0\\
0 & 0 & N-1 & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & N-1
\end{matrix}
\right|\tag{2}
\]
\(\{2\}-\{1\}\)得基尔霍夫矩阵\((3)\)
\begin{matrix}
N-1 & -1 & -1 & \cdots & -1\\
-1 & N-1 & -1 & \cdots & -1\\
-1 & -1 & N-1 & \cdots & -1\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
-1 & -1 & -1 & \cdots & N-1
\end{matrix}
\right|\tag{3}
\]
取前\(N-1\)行\(N-1\)列高斯消元,得\((4)\)
\begin{matrix}
1 & 1 & 1 & \cdots & 1\\
0 & N & 0 & \cdots & 0\\
0 & 0 & N & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & N
\end{matrix}
\right|\tag{4}
\]
然后求一下行列式就是答案了:
\(N^{N-2}\)
额,好吧还需要乘一个排列,因为打架的顺序可以不同
所以答案其实是:
\(N^{N-2}(N-1)!\)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll p=9999991;
ll a,ans=1;
int main(){
cin>>a;
for(ll i=1;i<=a-2;++i){
ans*=a;
ans%=p;
}
for(ll i=1;i<=a-1;++i){
ans*=i;
ans%=p;
}
cout<<ans<<endl;
}
小猴打架(luogu4430)(数论+生成树计数)的更多相关文章
- luogu4430 小猴打架
假硕讲了个prufer编码和Caylay公式 我为了证明prufer编码没用 所以用矩阵树定理证明了Caylay公式 让我们用矩阵树定理推一波 首先这个小猴打架最后会打成一棵树,这棵树是N个点的完全图 ...
- P4430 小猴打架
P4430 小猴打架 题目意思就是让你求,在网格图中(任意两点都有边)的生成树的个数(边的顺序不同也算不同的方案). 首先我们考虑一个生成树,由于一定有n-1条边,单单考虑添加边的顺序,根据乘法原理, ...
- BZOJ1430: 小猴打架
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 328 Solved: 234[Submit][Status] Descripti ...
- bzoj 1430: 小猴打架 -- prufer编码
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是 ...
- 【BZOJ 1430】 1430: 小猴打架 (Prufer数列)
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 625 Solved: 452 Description 一开始森林里面有N只互不相 ...
- 洛谷 P4430 小猴打架
洛谷 P4430 小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打 ...
- bzoj 1430: 小猴打架
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 634 Solved: 461[Submit][Status][Discuss] ...
- bzoj 1430 小猴打架 prufer 性质
小猴打架 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 709 Solved: 512[Submit][Status][Discuss] Descri ...
- [bzoj1430]小猴打架_prufer序列
小猴打架 bzoj-1430 题目大意:题目链接. 注释:略. 想法: 我们发现打架的情况就是一棵树. 我们只需要把确定树的形态然后乘以$(n-1)!$表示生成这棵树时边的顺序. 一共$n$个节点我们 ...
随机推荐
- 泛型c#(深入理解c#)
1.泛型带来的好处非常像静态语言较之动态语言的优点:更好的编译时检查,更多在代码中能直接表现的信息,更多的IDE支持,更好的性能.泛型的好处之一就是在编译时执行更多的检查,所以等到编译不在报错时,就极 ...
- ssh定义、操作
Secure Shell(縮寫为SSH)SSH為一项建立在应用层和传输层基础上的安全协议,为计算机上的Shell(壳层)提供安全的传输和使用环境. 传统的网络服务程序,如rsh.FTP.POP和Tel ...
- 第1章 Python数据模型
#<流畅的Python>读书笔记 # 第一部分 序幕 # 第1章 Python数据模型 # 魔术方法(magic method)是特殊方法的昵称.于是乎,特殊方法也叫双下方法(dunder ...
- mysql学习之路_事物_存储过程_备份
数据备份与还原 备份:将当前已有的数据保留. 还原:将已经保留的数据恢复到对应表中 为什么要做数据备份 1,防止数据丢失,被盗,误操作 2,保护数据记录 数据备份还原方式有多种:数据表备份 单表数据备 ...
- 预装apk
一般是在device/rockchip/ LOCAL_PATH := $(call my-dir)include $(CLEAR_VARS)LOCAL_MODULE := LanguageSetLOC ...
- 远程算数程序——版本v1.0
很少有需要背诵的程序,但是从这个程序开始,标记的都是必须背诵的. 远程算数程序概述 远程算数程序比较简单,分为服务器端和客户端,客户端发送欲计算的表达式给服务器端,服务端经过计算又返回结果给客户端.如 ...
- Ethernet II和802.3
在卷一中:(章节二:数据链路层) 在T C P / I P协议族中,链路层主要有三个目的: (1)为IP模块发送和接收IP数据报: (2 )为ARP模块发送ARP请求和接收ARP应答: (3 )为RA ...
- Jack Straws(poj 1127) 两直线是否相交模板
http://poj.org/problem?id=1127 Description In the game of Jack Straws, a number of plastic or wood ...
- VC中C++数值范围的确定
1. Visual C++ 32 位和 64 位编译器可识别本文后面的表中的类型. 如果其名称以两个下划线 (__) 开始,则数据类型是非标准的. 下表中指定的范围均包含起始值和结束值. 类型名称 字 ...
- Android之TextView灵活使用
Android之TextView灵活使用 在项目中有无遇到过这样一种程况,例如文字"王明今年10岁了", 但是数字10是从网络返回的数据, 而你又想把这个文字写在xml中, 过往我 ...