roidb是比较复杂的数据结构,存放了数据集的roi信息。原始的roidb来自数据集,在trian.py的get_training_roidb(imdb)函数进行了水平翻转扩充数量,然后prepare_roidb(imdb)【定义在roidb.py】为roidb添加了一些说明性的属性。

在这里暂时记录下roidb的结构信息,后面继续看的时候可能会有些修正:

roidb是由字典组成的list,roidb[img_index]包含了该图片索引所包含到roi信息,下面以roidb[img_index]为例说明:

roidb[img_index]包含的key, value
boxes box位置信息,box_num*4的np array
gt_overlaps 所有box在不同类别的得分,box_num*class_num矩阵
gt_classes 所有box的真实类别,box_num长度的list
flipped 是否翻转
 image 该图片的路径,字符串
width 图片的宽
height  图片的高
max_overlaps 每个box的在所有类别的得分最大值,box_num长度
max_classes 每个box的得分最高所对应的类,box_num长度
bbox_targets 每个box的类别,以及与最接近的gt-box的4个方位偏移

参考iamzhangzhuping的博客,感谢!更多信息请移步iamzhangzhuping的博客

下面是代码

roidb.py

import numpy as np
from fast_rcnn.config import cfg
from fast_rcnn.bbox_transform import bbox_transform
from utils.cython_bbox import bbox_overlaps
import PIL def prepare_roidb(imdb):
# 给原始roidata添加一些说明性的附加属性
"""Enrich the imdb's roidb by adding some derived quantities that
are useful for training. This function precomputes the maximum
overlap, taken over ground-truth boxes, between each ROI and
each ground-truth box. The class with maximum overlap is also
recorded.
"""
sizes = [PIL.Image.open(imdb.image_path_at(i)).size
for i in xrange(imdb.num_images)]
# 当在‘Stage 2 Fast R-CNN, init from stage 2 RPN R-CNN model’阶段中,roidb由rpn_roidb()
# 方法生成,其中的每一张图像的box不仅仅只有gtbox,还包括rpn_file里面的box。
roidb = imdb.roidb
for i in xrange(len(imdb.image_index)):
roidb[i]['image'] = imdb.image_path_at(i)
roidb[i]['width'] = sizes[i][0]
roidb[i]['height'] = sizes[i][1]
# need gt_overlaps as a dense array for argmax
# gt_overlaps是一个box_num*classes_num的矩阵,应该是每个box在不同类别的得分
gt_overlaps = roidb[i]['gt_overlaps'].toarray()
# max overlap with gt over classes (columns)
# 每个box的在所有类别的得分最大值,box_num长度
max_overlaps = gt_overlaps.max(axis=1)
# gt class that had the max overlap
# 每个box的得分最高所对应的类,box_num长度
max_classes = gt_overlaps.argmax(axis=1)
roidb[i]['max_classes'] = max_classes
roidb[i]['max_overlaps'] = max_overlaps
# sanity checks
# 做检查,max_overlaps == 0意味着背景,否则非背景
# max overlap of 0 => class should be zero (background)
zero_inds = np.where(max_overlaps == 0)[0]
assert all(max_classes[zero_inds] == 0)
# max overlap > 0 => class should not be zero (must be a fg class)
nonzero_inds = np.where(max_overlaps > 0)[0]
assert all(max_classes[nonzero_inds] != 0) def add_bbox_regression_targets(roidb):
"""Add information needed to train bounding-box regressors."""
assert len(roidb) > 0
assert 'max_classes' in roidb[0], 'Did you call prepare_roidb first?' num_images = len(roidb)
# Infer number of classes from the number of columns in gt_overlaps
# 类别数,roidb[0]对应第0号图片上的roi,shape[1]多少列表示roi属于不同类上的概率
num_classes = roidb[0]['gt_overlaps'].shape[1]
for im_i in xrange(num_images):
rois = roidb[im_i]['boxes']
max_overlaps = roidb[im_i]['max_overlaps']
max_classes = roidb[im_i]['max_classes']
# bbox_targets:每个box的类别,以及与最接近的gt-box的4个方位偏移
roidb[im_i]['bbox_targets'] = \
_compute_targets(rois, max_overlaps, max_classes) # 这里config是false
if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
# Use fixed / precomputed "means" and "stds" instead of empirical values
# 使用固定的均值和方差代替经验值
means = np.tile(
np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS), (num_classes, 1))
stds = np.tile(
np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS), (num_classes, 1))
else:
# Compute values needed for means and stds
# 计算所需的均值和方差
# var(x) = E(x^2) - E(x)^2
# 计数各个类别出现box的数量
class_counts = np.zeros((num_classes, 1)) + cfg.EPS #加上cfg.EPS防止除0出错
# 21类*4个位置,如果出现box的类别与其中某一类相同,将该box的4个target加入4个列元素中
sums = np.zeros((num_classes, 4))
# 21类*4个位置,如果出现box的类别与其中某一类相同,将该box的4个target的平方加入4个列元素中
squared_sums = np.zeros((num_classes, 4))
for im_i in xrange(num_images):
targets = roidb[im_i]['bbox_targets']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 0] == cls)[0]
# box的类别与该类匹配,计入
if cls_inds.size > 0:
class_counts[cls] += cls_inds.size
sums[cls, :] += targets[cls_inds, 1:].sum(axis=0)
squared_sums[cls, :] += \
(targets[cls_inds, 1:] ** 2).sum(axis=0) means = sums / class_counts # 均值
stds = np.sqrt(squared_sums / class_counts - means ** 2) #标准差 print 'bbox target means:'
print means
print means[1:, :].mean(axis=0) # ignore bg class
print 'bbox target stdevs:'
print stds
print stds[1:, :].mean(axis=0) # ignore bg class # Normalize targets
# 对每一box归一化target
if cfg.TRAIN.BBOX_NORMALIZE_TARGETS:
print "Normalizing targets"
for im_i in xrange(num_images):
targets = roidb[im_i]['bbox_targets']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 0] == cls)[0]
roidb[im_i]['bbox_targets'][cls_inds, 1:] -= means[cls, :]
roidb[im_i]['bbox_targets'][cls_inds, 1:] /= stds[cls, :]
else:
print "NOT normalizing targets" # 均值和方差也用于预测
# These values will be needed for making predictions
# (the predicts will need to be unnormalized and uncentered)
return means.ravel(), stds.ravel() # ravel()排序拉成一维 def _compute_targets(rois, overlaps, labels): # 参数rois只含有当前图片的box信息
"""Compute bounding-box regression targets for an image."""
# Indices目录 of ground-truth ROIs
# ground-truth ROIs
gt_inds = np.where(overlaps == 1)[0]
if len(gt_inds) == 0:
# Bail if the image has no ground-truth ROIs
# 不存在gt ROI,返回空数组
return np.zeros((rois.shape[0], 5), dtype=np.float32)
# Indices of examples for which we try to make predictions
# BBOX阈值,只有ROI与gt的重叠度大于阈值,这样的ROI才能用作bb回归的训练样本
ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0] # Get IoU overlap between each ex ROI and gt ROI
# 计算ex ROI and gt ROI的IoU
ex_gt_overlaps = bbox_overlaps(
# 变数据格式为float
np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
np.ascontiguousarray(rois[gt_inds, :], dtype=np.float)) # Find which gt ROI each ex ROI has max overlap with:
# this will be the ex ROI's gt target
# 这里每一行代表一个ex_roi,列代表gt_roi,元素数值代表两者的IoU
gt_assignment = ex_gt_overlaps.argmax(axis=1) #按行求最大,返回索引.
gt_rois = rois[gt_inds[gt_assignment], :] #每个ex_roi对应的gt_rois,与下面ex_roi数量相同
ex_rois = rois[ex_inds, :] targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
targets[ex_inds, 0] = labels[ex_inds] #第一个元素是label
targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois) #后4个元素是ex_box与gt_box的4个方位的偏移
return targets

py-faster-rcnn代码阅读3-roidb.py的更多相关文章

  1. tensorflow faster rcnn 代码分析一 demo.py

    os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placeme ...

  2. py faster rcnn+ 1080Ti+cudnn5.0

    看了py-faster-rcnn上的issue,原来大家都遇到各种问题. 我要好好琢磨一下,看看到底怎么样才能更好地把GPU卡发挥出来.最近真是和GPU卡较上劲了. 上午解决了g++的问题不是. 然后 ...

  3. Faster RCNN代码理解(Python)

    转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...

  4. Faster rcnn代码理解(1)

    这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架.好的开始吧- 这里我们跟着F ...

  5. Faster RCNN代码解析

    1.faster_rcnn_end2end训练 1.1训练入口及配置 def train(): cfg.GPU_ID = 0 cfg_file = "../experiments/cfgs/ ...

  6. Faster rcnn代码理解(2)

    接着上篇的博客,咱们继续看一下Faster RCNN的代码- 上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函 ...

  7. Faster R-CNN代码例子

    主要参考文章:1,从编程实现角度学习Faster R-CNN(附极简实现) 经常是做到一半发现收敛情况不理想,然后又回去看看这篇文章的细节. 另外两篇: 2,Faster R-CNN学习总结      ...

  8. Faster rcnn代码理解(4)

    上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是 ...

  9. Faster R-CNN论文阅读摘要

    论文链接: https://arxiv.org/pdf/1506.01497.pdf 代码下载: https://github.com/ShaoqingRen/faster_rcnn (MATLAB) ...

  10. Faster rcnn代码理解(3)

    紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层: 该层定义在lib>rpn>中,见该层定义: 首先说一下这一层的目的是输出在特征图上所有点的a ...

随机推荐

  1. 通过汇编一个简单的C程序,分析汇编代码理解计算机是如何工作的

    秦鼎涛  <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 实验一 通过汇编一个简单的C程序,分析汇编代码 ...

  2. 在centOS中安装mongodb

    自己在一个CentOS6.6的系统中按照官网的说明,走了一遍的安装过程,记录一下. 看过个mongo的视频,上面介绍的安装是用源码安装,而官网上说需要gcc4.8.3的版本,还有scons的编译工具, ...

  3. 编写JDBC框架:(策略设计模式)

    package com.itheima.domain; //一般:实体类的字段名和数据库表的字段名保持一致 //约定优于编码 public class Account { private int id ...

  4. Activiti源码:StandaloneInMemProcessEngineConfiguration与SpringProcessEngineConfiguration

    activiti-engine-5.22.0-sources.jar package org.activiti.engine.impl.cfg; StandaloneInMemProcessEngin ...

  5. java自定义注解学习(一)_demo小练习

    自定义注解 现在大家开发过程中,经常会用到注解. 比如@Controller 等等,但是有时候也会碰到自定义注解,在开发中公司的记录日志就用到了自定义注解.身为渣渣猿还是有必要学习下自定义注解的. 这 ...

  6. 如何有效地让一个“ParentFont = False”子控件使用与父母相同的字体名称?

    如何有效地让一个“ParentFont = False”子控件使用与父母相同的字体名称?(How to efficiently let a `ParentFont = False` child con ...

  7. Bootstrap-table学习笔记

    | 引入CSS文件 <link rel="stylesheet" href="bootstrap.min.css"> <link rel=&q ...

  8. MySQL 主从复制详解

    读写分离的意思是,写入的时候向 a 服务器写入,而读出的时候从 b c d 甚至更多的服务器读出:这样的架构适合于读多写少的应用,最典型的就是火车购票系统,一般我们买票的时候要先查询好多次,包括车次啊 ...

  9. Antenna Placement POJ - 3020 (最小边集覆盖)

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10699   Accepted: 526 ...

  10. Logback日志存放路径的问题

    问题: 将一个应用程序打成了Jar包后,使用命令运行jar包,发现日志存放的路径并不统一: 比如 hello.jar 包放在  /aaa/bbb 目录下 如果在 /aaa/bbb 目录下执行:java ...