[BZOJ 2257][JSOI2009]瓶子和燃料 题解(GCD)
[BZOJ 2257][JSOI2009]瓶子和燃料
Description
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了。
有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换。jyy
的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 。 jyy
将 K个瓶子交给火星人之后,火星人用它们装一些燃料给 jyy。所有的瓶子都没有刻度,只
在瓶口标注了容量,第i个瓶子的容量为Vi(Vi 为整数,并且满足1<=Vi<=1000000000 ) 。
火星人比较吝啬,他们并不会把所有的瓶子都装满燃料。他们拿到瓶子后,会跑到燃料
库里鼓捣一通,弄出一小点燃料来交差。jyy当然知道他们会来这一手,于是事先了解了火
星人鼓捣的具体内容。火星人在燃料库里只会做如下的3种操作:1、将某个瓶子装满燃料;
2、将某个瓶子中的燃料全部倒回燃料库;3、将燃料从瓶子a倒向瓶子b,直到瓶子b满
或者瓶子a空。燃料倾倒过程中的损耗可以忽略。火星人拿出的燃料,当然是这些操作能
得到的最小正体积。
jyy知道,对于不同的瓶子组合,火星人可能会被迫给出不同体积的燃料。jyy希望找
到最优的瓶子组合,使得火星人给出尽量多的燃料。
Input
第1行:2个整数N,K,
第2..N 行:每行1个整数,第i+1 行的整数为Vi
Output
仅1行,一个整数,表示火星人给出燃料的最大值。
Solution
1.考虑火星人只会在瓶子之间倒来倒去,不会倒掉一半或其他神奇的手段,所以他们能搞出来的燃料体积应该是所有瓶子容积的线性组合;
2.通过裴蜀定理我们可以轻松的证明,对于任意的一些整数,他们能组合出的最小正整数是他们的GCD,所以答案即为求所有数的约数中超过k个的最大值;
3.考虑到计数器数组开不下,改用数组存所有约数,最后sort一遍,O(n)找最优解。
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,divs[10000001],tot,cnt=1;
inline int rd(){
int x=0;
char c=getchar();
while(!isdigit(c))c=getchar();
while(isdigit(c)){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return x;
}
inline int mx(int x,int y){return x>y?x:y;}
inline bool cmp(int x,int y){return x>y;}
void calc(int v){
int temp=sqrt(v);
for(int i=1;i<temp;++i)
if(!(v%i)){
divs[++tot]=i;
divs[++tot]=v/i;
}
if(!(v%temp)){
divs[++tot]=temp;
if(v/temp!=temp) divs[++tot]=v/temp;
}
}
int main(){
n=rd();m=rd();
for(int i=1;i<=n;++i) calc(rd());
sort(divs+1,divs+1+tot,cmp);
for(int i=2;i<=tot;++i)
if(divs[i]!=divs[i-1]){
if(cnt>=m){printf("%d",divs[i-1]);return 0;}
cnt=1;
}
else ++cnt;
return 0;
}
GCD基础知识部分可以参考我的随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8371664.html
[BZOJ 2257][JSOI2009]瓶子和燃料 题解(GCD)的更多相关文章
- 洛谷 P4571 BZOJ 2257 [JSOI2009]瓶子和燃料
bzoj题目链接 上面hint那里是选择第2个瓶子和第3个瓶子 Time limit 10000 ms Memory limit 131072 kB OS Linux Source Jsoi2009 ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1326 Solved: 815[Submit][Stat ...
- bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理
题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...
- bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】
裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...
- bzoj 2257: [Jsoi2009]瓶子和燃料
#include<cstdio> #include<iostream> #include<algorithm> #include<cmath> usin ...
- 2257: [Jsoi2009]瓶子和燃料
题意:给你n个数字,然后让你选出k个,这k个数字进行任意组合,问得到的最小结果是多少? 数学知识: 分析:根据题意得出数学公式: 那么,如何在n个之中选出k个呢?其实不用选,因为直接计算各个因子,然后 ...
- bzoj2257: [Jsoi2009]瓶子和燃料
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了 ...
- 【BZOJ2257】[JSOI2009]瓶子和燃料(数论)
[BZOJ2257][JSOI2009]瓶子和燃料(数论) 题面 BZOJ 洛谷 题解 很明显就是从\(n\)个数里面选\(K\)个数让他们的\(gcd\)最大. 暴力找所有数的因数,拿个什么东西存一 ...
随机推荐
- 《Linux内核分析》第一周学习报告
第一周:计算机是如何工作的 姓名:王玮怡 学号:20135116 第一节 存储程序计算机工作模型(冯诺依曼体系结构) IP指向的内存地址,取指令执行,完成后,IP值自加一,取下一条指令再执行. AP ...
- [福大软工] Z班 个人项目自动测试结果
个人项目第二次测试结果[9.16] 注:下表中的成绩满分为25分,正确性测试 共5个,每个3分.效率测试共 2个,每个5分. 根据数据统计分档如下, // 前为档级,后为分数. 参数为50000 0- ...
- C#ToString() 格式化数值
格式字符串采用以下形式:Axx,其中 A 为格式说明符,指定格式化类型,xx 为精度说明符,控制格式化输出的有效位数或小数位数. 格式说明符 说明 示例 输出 C 货币 2.5.ToString(&q ...
- Linux命令常用
数据库:查看日志 vim /var/log/mysqld.log
- beta 圆桌 3
2018-12-16图片缺失,当日数据: 总工作量:24 已完成:5 剩余:19 031602111 傅海涛 1.今天进展 实时字幕的实现大概 2.存在问题 实时字幕存在不稳定和耗费资源 3.明天安排 ...
- Windows 2019 下安装Oracle18c
1. 跟之前版本不一样 与linux 的版本一样 18c的DB 端的安装有区别. 首先需要 创建一个oracle的目录. 这里最简单的方法是 参照12c的目录来 创建 比如我创建的 然后将 db_ho ...
- [转帖] mysql 用户 权限 密码等操作记录
前言 From :https://blog.csdn.net/yu12377/article/details/78214336 mysql5.7版本中用户管理与以前版本略有不同,在此记录,以备忘 登陆 ...
- mybatis之一对一关联
MapperAsso.xml <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mapper ...
- Java 工厂方法模式
在工厂对象上调用创建方法,生成接口的某个实现的对象 通过这种方式,接口与实现分离 方法接口 /** * 方法接口 */ public interface Service { void method1( ...
- 神奇的Redis延迟
最近在做某业务Redis的缩容工作,涉及到数据迁移,而Redis的数据迁移看起来蛮简单的,一对一的数据迁移只需要在slave行配置masterauth 和slaveof 两个参数即可,当然迁移过程中涉 ...