给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列。

数学表达式如下:

如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1,
使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。

说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) 。

示例 1:

输入: [1,2,3,4,5]
输出: true

示例 2:

输入: [5,4,3,2,1]
输出: false 思路:
实际参考思路是:先找到一个长度为2的递增序列,然后继续遍历找到一个比数组最大值更大的数字。 因此该过程中需要记录数组。   采用分别处理,如果有一个长度为2的递增序列,那么记录数组下标为true,同时更新最大值。  这种算法的空间复杂度是o(n)。   友情提示:一定是取得最大值和最小值去比较,只要有比最小值小,比最大值大的数,那么记录下来的数组就为true。
class Solution {
public boolean increasingTriplet(int[] nums) {
if(nums.length<3)return false;
int smallest=nums[0];
boolean uper[]=new boolean[nums.length]; //利用数组记录长度为2的递增序列
for(int i=1;i<nums.length;i++){
if(nums[i]>smallest){
uper[i]=true;
}
smallest=Math.min(smallest,nums[i]);
}
int biggest=nums[nums.length-1];
//再次遍历数组,此次从最后开始,不断更新最大值,只要满足长度为2的递增序列,同时当前遍历数字小于最大值,则返回true
for(int i=nums.length-2;i>=0;i--){ //遍历是从倒数第二个数字开始的
if(nums[i]<biggest){
if(uper[i]==true)return true;
}
biggest=Math.max(nums[i],biggest);
}
return false;
}
}

空间复杂度O(1)的解法:

思路:

首先设置m1,m2为Int最大值,然后对遍历的每一个数进行比较,m1记录数组中的最小值,m2记录比m1大的数字。  继续遍历,只要找到一个比m1,m2都更大的数字,那么返回true。
以及注意这个if语句的划分范围。
class Solution {
public boolean increasingTriplet(int[] nums) {
if(nums.length<3)return false;
int m1=Integer.MAX_VALUE,m2=Integer.MAX_VALUE;
for(int i=0;i<nums.length;i++){
//这里使用的是if (){}else if() { } else 语句,判断的逻辑是一开始是更新m1,m2,遍历两个数字时m1<m2(之后更新m1,m2的过程中不保证m1<m2),返回比m1,m2更大的数
if(m1>=nums[i])m1=nums[i];
else if(m2>=nums[i])m2=nums[i];
else return true;
}
return false;
}
}

在更新过程中也可使用此种逻辑表示:

 if(nums[i]<=m1){
m1 =nums[i];
continue;
}
if(m1<nums[i]&&nums[i]<=m2){
m2 =nums[i];
continue;
}
if(nums[i]>m2){
return true;

总结:这道题的难点在于if else if语句的逻辑掌握和难以想到用两个数字代替一个递增序列的情况。

leetcode-递增的三元子序列的更多相关文章

  1. LeetCode:递增的三元子序列【334】

    LeetCode:递增的三元子序列[334] 题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i ...

  2. Leetcode 334.递增的三元子序列

    递增的三元子序列 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n- ...

  3. 【LeetCode】334#递增的三元子序列

    题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1, 使得 ...

  4. Java实现 LeetCode 334 递增的三元子序列

    334. 递增的三元子序列 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ...

  5. [LeetCode] Increasing Triplet Subsequence 递增的三元子序列

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  6. [Leetcode] 第334题 递增的三元子序列

    一.题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1, ...

  7. [Swift]LeetCode334. 递增的三元子序列 | Increasing Triplet Subsequence

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  8. 334 Increasing Triplet Subsequence 递增的三元子序列

    给定一个未排序的数组,请判断这个数组中是否存在长度为3的递增的子序列.正式的数学表达如下:    如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1,    ...

  9. leetcode334 递增的三元子序列

    class Solution { public: bool increasingTriplet(vector<int>& nums) { //使用双指针: int len=nums ...

  10. [LeetCode] 334. Increasing Triplet Subsequence 递增三元子序列

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

随机推荐

  1. 转战JS(1) 初探与变量类型、运算符、常用函数与转换

    转战JS(1)初探与变量类型.运算符.常用函数与转换 做为一名.NET后台开发人员,正考滤向Web前端开发转型,之前也写过一代前端代码,可是当再回头看JS,并有转向它的意愿的时候,突然发现:原来JS不 ...

  2. 第 14 章 结构和其他数据形式(names3)

    /*----------------------------------- names3.c -- 使用指针和 malloc() ----------------------------------- ...

  3. 详解coredump

    一,什么是coredump 我们经常听到大家说到程序core掉了,需要定位解决,这里说的大部分是指对应程序由于各种异常或者bug导致在运行过程中异常退出或者中止,并且在满足一定条件下(这里为什么说需要 ...

  4. 分享-结合demo讲解JS引擎工作原理

    代码如下: var x = 1; function A(y){ var x = 2; function B(z){ console.log(x+y+z); } return B; } var C = ...

  5. 难度并不NOIP的NOIP模拟赛

    今天老师请了前几届的学长来讲课,可是讲课为什么要考试呢... 学长说难度是NOIP,于是我就naive的跟着参加了,然而T3难度并不友好,感觉确实不是很适合我们现在做......不过课本来也不是给我们 ...

  6. .netcore部署Linux并结合Nginx反向代理 get started

    一..NetCore网站准备与发布 首先准备好一个ASP.NET Core Web应用程序,我这里就使用新建的示例站点作为demo演示,使用dotnet publish 命令发布网站. 或者使用VS的 ...

  7. vSphere虚拟化管理平台的功能

    VMware vSphere® 提供全球领先的虚拟化平台,用于构建云计算基础架构. vSphere 有哪些功能 强大的计算能力 虚拟化 x86 服务器资源并将其聚合成逻辑池,用于分配多个工作负载. 网 ...

  8. NRF51822/NRF51802/NRF52810/NRF52811的详解区别

    nRF51系列 - 多协议低功耗蓝牙和ANT/ANT+ 和2.4GHz专用系统级芯片 NRF51822-QFAA和NRF51802-QFAA在FLASH RAM的容量没有差别:区别在于:1.接收灵敏度 ...

  9. QT1.1-与Opencv的hello world

    qt:一个1991年由奇趣科技开发的跨平台C++图形用户界面应用程序开发框架.它既可以开发GUI程序,也可用于开发非GUI程序,比如控制台工具和服务器.Qt是面向对象的框架,使用特殊的代码生成扩展(称 ...

  10. 使用navicat连接mysql时报错:2059 - authentication plugin 'caching_sha2_password'

    首先从本地登录mysql数据库,进入mysql控制台,输入如下命令: ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_passwo ...