给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列。

数学表达式如下:

如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1,
使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。

说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) 。

示例 1:

输入: [1,2,3,4,5]
输出: true

示例 2:

输入: [5,4,3,2,1]
输出: false 思路:
实际参考思路是:先找到一个长度为2的递增序列,然后继续遍历找到一个比数组最大值更大的数字。 因此该过程中需要记录数组。   采用分别处理,如果有一个长度为2的递增序列,那么记录数组下标为true,同时更新最大值。  这种算法的空间复杂度是o(n)。   友情提示:一定是取得最大值和最小值去比较,只要有比最小值小,比最大值大的数,那么记录下来的数组就为true。
class Solution {
public boolean increasingTriplet(int[] nums) {
if(nums.length<3)return false;
int smallest=nums[0];
boolean uper[]=new boolean[nums.length]; //利用数组记录长度为2的递增序列
for(int i=1;i<nums.length;i++){
if(nums[i]>smallest){
uper[i]=true;
}
smallest=Math.min(smallest,nums[i]);
}
int biggest=nums[nums.length-1];
//再次遍历数组,此次从最后开始,不断更新最大值,只要满足长度为2的递增序列,同时当前遍历数字小于最大值,则返回true
for(int i=nums.length-2;i>=0;i--){ //遍历是从倒数第二个数字开始的
if(nums[i]<biggest){
if(uper[i]==true)return true;
}
biggest=Math.max(nums[i],biggest);
}
return false;
}
}

空间复杂度O(1)的解法:

思路:

首先设置m1,m2为Int最大值,然后对遍历的每一个数进行比较,m1记录数组中的最小值,m2记录比m1大的数字。  继续遍历,只要找到一个比m1,m2都更大的数字,那么返回true。
以及注意这个if语句的划分范围。
class Solution {
public boolean increasingTriplet(int[] nums) {
if(nums.length<3)return false;
int m1=Integer.MAX_VALUE,m2=Integer.MAX_VALUE;
for(int i=0;i<nums.length;i++){
//这里使用的是if (){}else if() { } else 语句,判断的逻辑是一开始是更新m1,m2,遍历两个数字时m1<m2(之后更新m1,m2的过程中不保证m1<m2),返回比m1,m2更大的数
if(m1>=nums[i])m1=nums[i];
else if(m2>=nums[i])m2=nums[i];
else return true;
}
return false;
}
}

在更新过程中也可使用此种逻辑表示:

 if(nums[i]<=m1){
m1 =nums[i];
continue;
}
if(m1<nums[i]&&nums[i]<=m2){
m2 =nums[i];
continue;
}
if(nums[i]>m2){
return true;

总结:这道题的难点在于if else if语句的逻辑掌握和难以想到用两个数字代替一个递增序列的情况。

leetcode-递增的三元子序列的更多相关文章

  1. LeetCode:递增的三元子序列【334】

    LeetCode:递增的三元子序列[334] 题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i ...

  2. Leetcode 334.递增的三元子序列

    递增的三元子序列 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n- ...

  3. 【LeetCode】334#递增的三元子序列

    题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1, 使得 ...

  4. Java实现 LeetCode 334 递增的三元子序列

    334. 递增的三元子序列 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ...

  5. [LeetCode] Increasing Triplet Subsequence 递增的三元子序列

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  6. [Leetcode] 第334题 递增的三元子序列

    一.题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1, ...

  7. [Swift]LeetCode334. 递增的三元子序列 | Increasing Triplet Subsequence

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  8. 334 Increasing Triplet Subsequence 递增的三元子序列

    给定一个未排序的数组,请判断这个数组中是否存在长度为3的递增的子序列.正式的数学表达如下:    如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1,    ...

  9. leetcode334 递增的三元子序列

    class Solution { public: bool increasingTriplet(vector<int>& nums) { //使用双指针: int len=nums ...

  10. [LeetCode] 334. Increasing Triplet Subsequence 递增三元子序列

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

随机推荐

  1. wget 的 使用方法

    问题: 最近在使用 wget ,感觉有很多的功能都不会,现在进行写一篇文章,更新一些wget的使用技巧,防止以后忘记的时候,重新回来进行查阅. 正文: 现在经常使用: curl -O url 下载文件 ...

  2. EF使用笔记

    最近写接口导数据到大数据中心,但是实体数据字段非常多,如果手动去建数据库表和写插入语句效率非常低,所以想都试一试EF,效率之高,简直吓人,所以此文详细记录操作过程以备下次使用时之用.仅需六部就可完成建 ...

  3. 【转】Python学习---Socket通信原理以及三次握手和四次挥手详解

    [原文]https://www.toutiao.com/i6566024355082404365/ 什么是Socket? Socket的中文翻译过来就是"套接字".套接字是什么,我 ...

  4. Scala学习之路 (九)Scala的上界和下届

    一.泛型 1.泛型的介绍 泛型用于指定方法或类可以接受任意类型参数,参数在实际使用时才被确定,泛型可以有效地增强程序的适用性,使用泛型可以使得类或方法具有更强的通用性.泛型的典型应用场景是集合及集合中 ...

  5. 服务发现系统etcd之安装和使用

    一.概述 etcd是一个高可用的键值存储系统,主要用于共享配置和服务发现.etcd是由CoreOS开发并维护的,灵感来自于 ZooKeeper 和 Doozer,它使用Go语言编写,并通过Raft一致 ...

  6. error occurred at recursive SQL level 1

    ORA-00604: error occurred at recursive SQL level 1出现的错误:java.sql.SQLException: ORA-00604: error occu ...

  7. WorldWind源码剖析系列:代理助手类ProxyHelper

    代理助手类ProxyHelper通过平台调用的互操作技术封送了若干Win32结构体和函数.该类类图如下. 提供的主要处理方法基本上都是静态函数,简要描述如下: 内嵌类型WINHTTP_AUTOPROX ...

  8. ThinkCenter安装CentOS7

    重启电脑按F12选择从光盘启动: 选择install CentOS7,并按“E”键 进行编辑 编辑后,并按Ctrl+X 查看并找到你需要的盘符名称,如:sr0:随后强制重启电脑. 并修改如下: 按Ct ...

  9. [浅谈CSS核心概念] CSS元素类型和盒模型

    元素类型 在CSS中,HTML标签元素分为三种类型: 块状元素 内联元素(也叫行内元素) 内联块状元素 它们之间的区别在于: 块级元素会独占一行,内联元素和内联块状元素则都会在一行内显示 块状元素和内 ...

  10. mysql的常用优化知识

    索引类型:主键索引,唯一索引,联合索引,普通索引,全文索引 建立索引: create index index_name on table(field_name); 删除索引: drop index i ...