【GAN与NLP】GAN的原理 —— 与VAE对比及JS散度出发
0. introduction
GAN模型最早由Ian Goodfellow et al于2014年提出,之后主要用于signal processing和natural document processing两方面,包含图片、视频、诗歌、一些简单对话的生成等。由于文字在高维空间上不连续的问题(即任取一个word embedding向量不一定能找到其所对应的文字),GAN对于NLP的处理不如图像的处理得心应手,并且从本质上讲,图片处理相较于NLP更为简单(因为任何动物都可以处理图像,但只有人类可以处理语言)。因而将GAN与NLP结合,具有很深远的影响。Bengio也说,这将是让计算机获得更高智能的关键一步。
在开始之前,有一些先验知识,已经懂的可以跳过。
信息量:“中国队进入了2018世界杯决赛圈”显然比“巴西队进入了2018世界杯决赛圈”发生概率p(x)要低,信息量 I(x)=−log(p(x))要大。
熵(Entropy):为事件发生所有概率p(xi)的信息量,即
KL(Kullback-Leibler)散度,也叫相对熵,用来衡量真实分布P与预测分布Q之间的差异,即,KL散度越小,预测分布越接近于真实分布。需要注意这里DKL(P||Q)!=DKL(Q||P)。
交叉熵(cross entropy),为KL散度拆解后的一部分内容,公式是。可以看出,相对熵DKL(p||q) = -H(p) + H(p,q),可以看做负的真实分布p的熵,加p与q交叉熵的结果。
由于p的熵不变,故在机器学习中只需要优化交叉熵作为损失函数即可,以下m为当前batch中样本数,n为标签数。
在单分类问题中(一个节点属于一个类别,使用softmax计算预测数据,每个label累积和为1),损失函数为;
在多分类问题中(一个节点可以属于多个类别,使用sigmoid计算预测数据,每个label独立分布),交叉熵写法可以简化为,损失函数为。
JSD(Jensen-Shannon)散度,优化了KL散度中p与q不能换方向的限制,,其中M为P和Q的算数平均数M=1/2*(P+Q),可以看出,这里P与Q是对称的,JSD(P||Q) = JSD(Q||P)。
1. 与VAE对比
Autoencoder的主要思想是,生成内容尽可能和原内容一致。如下图所示,一开始随机生成一个向量作为code,之后通过NN Decoder解码看是否生成对应图片。即原图片input为x,code为z,经过Decoder后output为生成图片x',其中z要相较于x更小,压缩更多内容。其损失函数由下面所示。VAE是加入高斯噪声的Autoencoder更进一步,进而可以生成更多样的结果。关于Autoencoder和VAE具体可以参见之前文章https://www.cnblogs.com/rucwxb/p/8056144.html (不参见也可以。。)
但是能够生成多样化结果的VAE有一个问题是,它并不是真正的模拟生成真实图片,比如对于同样的7来说,下图的左右和原图都是1个像素点的不同,但右边就是非真实图片,而VAE对于这两个生成图片的处理方法是相同的。
因而与VAE一步到位、非黑即白的使用重构损失函数的判别方法不同,GAN的判别器对生成器的指导是一步一步地,逐步优化生成器。
2. GAN的原理
一般来说,GAN分为Generator和Discriminator,它们有不同的目标,Generator的目标是尽可能train,Discriminator是not train。起初Generator和VAE类似,随机生成一个向量,再由Discriminator判断真假(0/1),之后固定Discriminator,使用gradient descent来更新Generator的参数,使得Discriminator的输出尽可能接近1。
原始GAN的原理是最大似然估计,总体损失函数为,即优化Discriminator使得损失尽可能明显,优化Generator使得损失尽可能缩小。这里G是个函数,输入的是z(一个预先随机设定的标准正态分布,每一轮迭代都会改变),输出的是生成数据x,即G(z)=x,如下图所示。其中,要注意的是优化时改变的不仅是G的参数,还有G。D也是个函数,输入的是x,输出一个x和真实数据的差异(标量)。
损失函数V可以看做真实数据分布P_data与生成数据分布P_G的交叉熵(文章开头有详细介绍),即
在训练时,先固定G不动,经过k次迭代后找到最优的D。由于对于式子f(D) = alogD + blog(1-D)来说,当D*=a/(a+b)时f(D)有最大值,所以对于上面的函数V来说,D*(x) = Pdata(x) / (Pdata(x)+PG(x)) 时,V(G,D)有最大值,此时可以转换成的形式,损失函数V(G,D)变成P_data和P_G的JSD距离。
同时,对于Discriminator来说,应该做到输入为真实数据xi时接受,为生成数据x*i时拒绝,V还可以写成这样的形式,同时,D的目标是maximize这个V,即minimize,这也是Discriminator的损失函数。
对于Generator来说,只需考虑生成数据x*i的情况,因此Generator的损失函数为,但是由于log(1-D(x))在一开始训练很慢(如下图所示),于是进一步优化Generator的损失函数改为
最终总结下GAN每轮迭代的步骤:
a. 从P_data(x)中采样m个 {x1,x2, … xm}
b. 通过高斯分布P_prior(z)生成m个{z1, … , zm}
c. 通过x*i=G(zi)获得生成数据 {x*1, … , x*m}
d. 更新Discriminator的参数,以最大化,
更新方法为梯度下降法θd = θd + ηΔV’(θd)
a-d重复k次学得Discriminator
e. 通过高斯分布P_prior(z)重新生成m个{z1, … , zm},并由此生成x*i=G(zi)
f. 更新generator的参数,以最小化,
更新方法为梯度下降法θg = θg − ηΔV’(θg)
e-f只需重复1次学得Generator
3. 训练GAN中遇到的问题
问题1 —— JS散度=0
Discriminator很快就准确度很接近1,too strong,由于此时还没有训练出很好的Generator(即P_data(x)与P_G(x)在高维空间上几乎没有交叠),生成数据与真实数据完全不同,JSD(P_data||P_G)=0。这样 Discriminator估计的JS散度几乎不会给Generator提供任何信息,使其停止优化。
某种程度上可以通过添加噪声来解决,这样增大P_data(x)与P_G(x)重合面积,使得Discriminator不能完美将P_data(x)与P_G(x)区分开。并且噪声随着时间逐渐减少。
问题2 —— Mode Collapse
这个即为只生成一种类型生成数据的情形。如下图所示,红色是生成数据,蓝色是真实数据,由于Discriminator只能提供判断是否生成了正确数据,而对遗失了什么数据不得而知,最终模型会拟合到单一情形中。
而对于以上两个问题,WGAN都可以解决。
关于WGAN的介绍,知乎上的这篇文章https://zhuanlan.zhihu.com/p/25071913写的很好。
简言之,其修改损失函数,不使用不稳定的JS散度,而是使用Wasserstein距离,即EM(earth-mover)距离,代替了JS散度,解决即使两个分布没有任何重叠情况下对于距离的计算方法,为Generator提供有意义的梯度。
主要在模型上做了四点变化,由于不再使用交叉熵,因而Discriminator最后一层无需sigmoid函数,G与D的损失函数也不取log,另外加入损失函数务必Lipschitz连续的要求,即每次更新判别器的参数之后把它们的绝对值截断到不超过一个固定常数c,使用适合梯度不稳定情况的RMSProp优化器。
——————— END ———————
之后会继续写出seqGAN等引入强化学习方法将GAN用于NLP领域的文章,敬请期待。
【GAN与NLP】GAN的原理 —— 与VAE对比及JS散度出发的更多相关文章
- 深度学习----现今主流GAN原理总结及对比
原文地址:https://blog.csdn.net/Sakura55/article/details/81514828 1.GAN 先来看看公式: GAN网络主要由两个网络构 ...
- DCGAN、WGAN、WGAN-GP、LSGAN、BEGAN原理总结及对比
DCGAN.WGAN.WGAN-GP.LSGAN.BEGAN原理总结及对比 from:https://blog.csdn.net/qq_25737169/article/details/7885778 ...
- GAN︱GAN 在 NLP 中的尝试、困境、经验
GAN 自从被提出以来,就广受大家的关注,尤其是在计算机视觉领域引起了很大的反响,但是这么好的理论是否可以成功地被应用到自然语言处理(NLP)任务呢? Ian Goodfellow 博士 一年前,网友 ...
- GAN与NLP的讨论
https://www.jianshu.com/p/32e164883eab 这篇文章,GAN与NLP的讨论,可以看看.
- 【转载】GAN for NLP 论文笔记
本篇随笔为转载,原贴地址,知乎:GAN for NLP(论文笔记及解读).
- [转帖]LCD与LED的区别之背光原理与优缺点对比介绍
LCD与LED的区别之背光原理与优缺点对比介绍 http://m.elecfans.com/article/620376.html 时下液晶面板与液晶电视技术已经达到炉火纯青的境界,并已经成为大屏幕平 ...
- GAN学习指南:从原理入门到制作生成Demo,总共分几步?
来源:https://www.leiphone.com/news/201701/yZvIqK8VbxoYejLl.html?viewType=weixin 导语:本文介绍下GAN和DCGAN的原理,以 ...
- [NLP] TextCNN模型原理和实现
1. 模型原理 1.1 论文 Yoon Kim在论文(2014 EMNLP) Convolutional Neural Networks for Sentence Classification提出Te ...
- NLP自然语言处理原理及名词介绍
1. 自然语言概念 自然语言,即我们人类日常所使用的语言,是人类交际的重要方式,也是人类区别其他动物的本质特征. 但是我们只能通过自然语言与人交流,无法与计算机进行交流. 2. 自然语言处理 自然语言 ...
随机推荐
- SQL SERVER_Restore(version)
Background: We have a project use SQL SERVER 2012. When I tried to restore a backup into my local da ...
- Python pandas & numpy 笔记
记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...
- Drool实战系列(二)之eclipse安装drools插件
这里演示是drools7.5.0,大家可以根据自己需要安装不同的drools版本 drools安装地址: http://download.jboss.org/drools/release/ 一. 二. ...
- js判断文本是否溢出容器
onShowNameTipsMouseenter: function(e) { var target = e.target; var containerLength = $(target).width ...
- TortoiseSVN 只取下或更新部分文件的方法(Sparse Update/Sparse Checkout)
Sparse Update/Sparse Checkout To easily select only the items you want for the checkout and force ...
- 20155213免考项目——bof进阶及简易的HIDAttack
20155213免考项目--bof进阶及简易的HIDAttack 目录 序 任务一:构造Shellcode(64位) 任务二:64位Shellcode的注入 任务三:32位及64位bof攻击(开启堆栈 ...
- 20155239 《网络对抗》Exp4 恶意代码分析
20155239 <网络对抗>Exp4 恶意代码分析 使用schtasks指令监控系统运行 先在C盘目录下建立一个netstatlog.bat文件,用来将记录的联网结果格式化输出到nets ...
- 20155302《网络对抗》Exp3 免杀原理与实践
20155302<网络对抗>Exp3 免杀原理与实践 实验要求 1.正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己利用shellcode编 ...
- 20155306 白皎 0day漏洞——漏洞利用原理之DEP
20155306 白皎 0day漏洞--漏洞利用原理之DEP 一.DEP机制的保护原理 1.为什么出现DEP? 溢出攻击的根源在于现代计算机对数据和代码没有明确区分这一先天缺陷,就目前来看重新去设计计 ...
- # 2017-2018-2 20155319 『网络对抗技术』Exp8:Web基础
2017-2018-2 20155319 『网络对抗技术』Exp8:Web基础 一.原理与实践说明 1.实践具体要求 (1).Web前端HTML(0.5分) 能正常安装.启停Apache.理解HTML ...