https://pintia.cn/problem-sets/994805342720868352/problems/994805343236767744

The task of this problem is simple: insert a sequence of distinct positive integers into a hash table first. Then try to find another sequence of integer keys from the table and output the average search time (the number of comparisons made to find whether or not the key is in the table). The hash function is defined to be ( where TSize is the maximum size of the hash table. Quadratic probing (with positive increments only) is used to solve the collisions.

Note that the table size is better to be prime. If the maximum size given by the user is not prime, you must re-define the table size to be the smallest prime number which is larger than the size given by the user.

Input Specification:

Each input file contains one test case. For each case, the first line contains 3 positive numbers: MSize, N, and M, which are the user-defined table size, the number of input numbers, and the number of keys to be found, respectively. All the three numbers are no more than 1. Then N distinct positive integers are given in the next line, followed by M positive integer keys in the next line. All the numbers in a line are separated by a space and are no more than 1.

Output Specification:

For each test case, in case it is impossible to insert some number, print in a line X cannot be inserted. where X is the input number. Finally print in a line the average search time for all the M keys, accurate up to 1 decimal place.

Sample Input:

4 5 4
10 6 4 15 11
11 4 15 2

Sample Output:

15 cannot be inserted.
2.8

代码:

#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + 10;
int M, N, K, x;
int a[maxn], ans[maxn], vis[maxn];
bool flag[maxn];
int all = 0; bool isprime(int x) {
if(x <= 1) return false;
if(x == 2) return true;
for(int i = 2; i * i <= x; i ++)
if(x % i == 0) return false;
return true;
} void Hash(int x) {
for(int i = 0; i < M; i ++) {
int key = (x + i * i) % M;
if(vis[key] == 0) {
vis[key] = 1;
ans[key] = x;
flag[x] = true;
return ;
}
}
if(!flag[x]);
printf("%d cannot be inserted.\n", x);
} int main() {
scanf("%d%d%d", &M, &N, &K);
for(int i = 0; i < N; i ++)
scanf("%d", &a[i]); if(M <= 1) M = 2;
while(!isprime(M)) M ++; memset(flag, false, sizeof(flag));
for(int i = 0; i < N; i ++)
Hash(a[i]); for(int k = 0; k < K; k ++) {
scanf("%d", &x);
for(int i = 0; i <= M; i ++) {
all ++;
int rec = (x + i * i) % M;
if(ans[rec] == x || ans[rec] == 0)
break;
}
}
printf("%.1lf\n", 1.0 * all / K);
return 0;
}

  搜索次数就是先把哈希表建好 输入一个数 判断一下这个位置是不是它 或者判断一下哈希表里面有没有这个数字 如果第一次没搜到就二次规划 每搜一次加一次 (刚开始没明白搜索次数什么意思 是猪)

PAT 甲级 1145 Hashing - Average Search Time的更多相关文章

  1. PAT 甲级 1145 Hashing - Average Search Time (25 分)(读不懂题,也没听说过平方探测法解决哈希冲突。。。感觉题目也有点问题)

    1145 Hashing - Average Search Time (25 分)   The task of this problem is simple: insert a sequence of ...

  2. PAT Advanced 1145 Hashing – Average Search Time (25) [哈希映射,哈希表,平⽅探测法]

    题目 The task of this problem is simple: insert a sequence of distinct positive integers into a hash t ...

  3. PAT 1145 Hashing - Average Search Time [hash][难]

    1145 Hashing - Average Search Time (25 分) The task of this problem is simple: insert a sequence of d ...

  4. [PAT] 1143 Lowest Common Ancestor(30 分)1145 Hashing - Average Search Time(25 分)

    1145 Hashing - Average Search Time(25 分)The task of this problem is simple: insert a sequence of dis ...

  5. PAT 1145 Hashing - Average Search Time

    The task of this problem is simple: insert a sequence of distinct positive integers into a hash tabl ...

  6. 1145. Hashing - Average Search Time

      The task of this problem is simple: insert a sequence of distinct positive integers into a hash ta ...

  7. 1145. Hashing - Average Search Time (25)

    The task of this problem is simple: insert a sequence of distinct positive integers into a hash tabl ...

  8. PAT_A1145#Hashing - Average Search Time

    Source: PAT A1145 Hashing - Average Search Time (25 分) Description: The task of this problem is simp ...

  9. PAT-1145(Hashing - Average Search Time)哈希表+二次探测解决冲突

    Hashing - Average Search Time PAT-1145 需要注意本题的table的容量设置 二次探测,只考虑正增量 这里计算平均查找长度的方法和书本中的不同 #include&l ...

随机推荐

  1. Maven单独构建多模块项目中的单个模块

    Maven单独构建多模块项目中的单个模块   说明: 1.可能存在的场景,多模块项目没有互相引用,那么此时可以单独构建单个项目,指定到子模块的pom.xml文件即可完成编译. 2.如果多模块项目各自都 ...

  2. WorldWind源码剖析系列:插件类Plugin、插件信息类PluginInfo和插件编译器类PluginCompiler

    插件类Plugin是所有由插件编译器加载的插件子类的抽象父类,提供对插件的轻量级的访问控制功能. 插件信息类PluginInfo用来存储关于某个插件的信息的类,可以理解为对插件类Plugin类的进一步 ...

  3. Python2.7-stat

    stat模块,用于解释 os.stat(),os.lstat(),os.fstat() 返回的结果,定义了许多表示文件或路径的各个状态的常数和测试各个状态的函数具体参考 官方文档 和 http://w ...

  4. input 内容改变的触发事件

    1. onchange onchange 事件会在域的内容改变时触发.支持的标签<input type="text">, <textarea>, <s ...

  5. 异常处理简单例子--python

    捕获所有异常 #!/usr/bin/pythona = 10b = 0try: c = a/b print c print 'nothing happen...'#todo: catch all ex ...

  6. Docker搭建Mysql容器

    转载自:http://blog.csdn.net/Mungo/article/details/78521832?locationNum=9&fps=1 本文介绍如何使用docker迅速搭建My ...

  7. Dsu on Tree

    这个属于一种技巧,可以解决类似于子树询问无修改可离线的问题,一些点分治的问题也可以用Dsu on Tree解决,并且常数较小,代码复杂度低,很具有可写性. 整体上的意思就是继承重儿子的信息,暴力修改轻 ...

  8. Django Rest Framework源码剖析(四)-----API版本

    一.简介 在我们给外部提供的API中,可会存在多个版本,不同的版本可能对应的功能不同,所以这时候版本使用就显得尤为重要,django rest framework也为我们提供了多种版本使用方法. 二. ...

  9. Android开发——Android多进程以及使用场景介绍

    个层级,具体可以查看Android开发--Android进程保活招式大全中1.1部分的内容,这里就不赘述了. 根据进程中当前活动组件的重要程度,Android 会将进程评定为它可能达到的最高级别.例如 ...

  10. JavaEE笔记(十三)

    #单一职责原则 一个类只做一件事 #开闭原则 拓展开,修改源码闭 #动态代理 1 基于接口的方式 jdk的动动代理2 基于类的方式 cglib的代理 #SSH整合 1.spring(容器)    1& ...