管道

Conn1,conn2 = Pipe()

Conn1.recv()

Conn1.send()

数据接收一次就没有了

from multiprocessing import Process,Pipe

def f1(conn):

    from_zhujincheng = conn.recv()
print('子进程')
print('来自主进程的消息:',from_zhujincheng) if __name__ == '__main__':
conn1,conn2 = Pipe() #创建一个管道对象,全双工,返回管道的两端,但是一端发送的消息,只能另外一端接收,自己这一端是不能接收的
p1 = Process(target=f1,args=(conn2,))
p1.start() conn1.send('出来吧')
print('主进程')

事件

E = Event()  #初识状态是false

E.wait()  当事件对象e的状态为false的时候,在wait的地方会阻塞程序,当对象状态为true的时候,直接在这个wait地方继续往下执行

E.set()  将事件对象的状态改为true,

E.is_set() 查看状态

E.clear()  将事件对象的状态改为false

from multiprocessing import Process,Event

e = Event()  #创建事件对象,这个对象的初识状态为False
print('e的状态是:',e.is_set()) # False print('进程运行到这里了')
e.set() #将e的状态改为True
print('e的状态是:',e.is_set()) # True e.clear() #将e的状态改为False e.wait() #e这个事件对象如果值为False,就在我加wait的地方等待 print('进程过了wait')

信号量

S = semphore(数字),内部维护了一个计数器,acquire-1,release+1,为0的时候,其他的进程都要在acquire之前等待

S.acquire()

需要锁住的代码

S.release()

import time,random
from multiprocessing import Process,Semaphore def f1(i,s):
s.acquire()
print('%s男嘉宾到了'%i)
time.sleep(random.randint(1,3))
s.release() if __name__ == '__main__':
s = Semaphore(4) #计数器4,acquire一次减一,为0 ,其他人等待,release加1
for i in range(10):
p = Process(target=f1,args=(i,s))
p.start()

进程池

进程的创建和销毁是很有消耗的,影响代码执行效率

在有进程池的代码中,主进程运行结束,进程池里面的任务全部停止,不会等待进程池里面的任务

pl = Pool(数字)   这个数字一般是电脑的cpu数

pl的方法:

  Map:异步提交任务,并且传参需要可迭代类型的数据,自带close和join功能

import time
from multiprocessing import Process,Pool #对比多进程和进程池的效率
def f1(n):
for i in range(5):
n = n + i if __name__ == '__main__': #统计进程池执行100个任务的时间
s_time = time.time()
pool = Pool(4)
pool.map(f1,range(100))
e_time = time.time()
dif_time = e_time - s_time #统计100个进程,来执行100个任务的执行时间
p_s_t = time.time() #多进程起始时间
p_list = []
for i in range(100):
p = Process(target=f1,args=(i,))
p.start()
p_list.append(p)
[pp.join() for pp in p_list]
p_e_t = time.time()
p_dif_t = p_e_t - p_s_t
print('进程池的时间:',dif_time)
print('多进程的执行时间:',p_dif_t)
# 结果: 进程池的时间: 0.40102291107177734 多进程的执行时间: 9.247529029846191
# 可以看出进程池运行效率远远大于创建多进程

  

Close : 锁住进程池,防止有其他的新的任务在提交给进程池

  Join : 等待着进程池将自己里面的任务都执行完

  Res = Apply(f1,args=(i,))  #同步执行任务,必须等任务执行结束才能给进程池提交下一个任务,可以直接拿到返回结果res

import time
from multiprocessing import Process,Pool def f1(n):
time.sleep(1)
return n*n if __name__ == '__main__': pool = Pool(4)
for i in range(10):
res = pool.apply(f1,args=(i,))
print(res)

Res_obj = Apply_async(f1,args=(i,))  #异步提交任务,可以直接拿到结果对象,从结果对象里面拿结果,要用get方法,get方法会阻塞程序,没有拿到结果会一直等待

import time
from multiprocessing import Process,Pool def f1(n):
time.sleep(0.5)
return n*n if __name__ == '__main__': pool = Pool(4) res_list = []
for i in range(10):
res = pool.apply_async(f1,args=(i,)) # 不能直接打印返回值,因为直接返回结果对象,进程还没执行完,结果对象里没有数据
res_list.append(res) pool.close()
pool.join() #打印结果,异步提交之后的结果对象
for i in res_list:
print(i.get())

回调函数:

Apply_async(f1,args=(i,),callback=function)  #将前面f1这个任务的返回结果作为参数传给callback指定的那个function函数

import os
from multiprocessing import Pool,Process def f1(n):
print('传入的函数',n)
return n*n def call_back_func(asdf):
print('回调函数',asdf) if __name__ == '__main__':
pool = Pool(4)
res = pool.apply_async(f1,args=(5,),callback=call_back_func)
pool.close()
pool.join()

Python 并发编程(管道,事件,信号量,进程池)的更多相关文章

  1. python之路--管道, 事件, 信号量, 进程池

    一 . 管道 (了解) from multiprocessing import Process, Pipe def f1(conn): # 管道的recv 里面不用写数字 from_main_proc ...

  2. python并发编程之进程2(管道,事件,信号量,进程池)

    管道 Conn1,conn2 = Pipe() Conn1.recv() Conn1.send() 数据接收一次就没有了 from multiprocessing import Process,Pip ...

  3. 并发编程7 管道&事件&信号量&进程池(同步和异步方法)

    1,管道 2.事件 3.信号量 4.进程池的介绍&&进程池的map方法&&进程池和多进程的对比 5.进程池的同步方法和异步方法 6.重新解释同步方法和异步方法 7.回调 ...

  4. python之管道, 事件, 信号量, 进程池

    管道:双向通信 2个进程之间相互通信 from multiprocessing import Process, Pipe def f1(conn): from_zjc_msg = conn.recv( ...

  5. day 32 管道 事件 信号量 进程池

    一.管道(多个时数据不安全)   Pipe 类 (像队列一样,数据只能取走一次) conn1,conn2 = Pipe()     建立管道 .send()   发送 .recv()   接收 二.事 ...

  6. Python并发编程03 /僵孤进程,孤儿进程、进程互斥锁,进程队列、进程之间的通信

    Python并发编程03 /僵孤进程,孤儿进程.进程互斥锁,进程队列.进程之间的通信 目录 Python并发编程03 /僵孤进程,孤儿进程.进程互斥锁,进程队列.进程之间的通信 1. 僵尸进程/孤儿进 ...

  7. python并发编程02 /多进程、进程的创建、进程PID、join方法、进程对象属性、守护进程

    python并发编程02 /多进程.进程的创建.进程PID.join方法.进程对象属性.守护进程 目录 python并发编程02 /多进程.进程的创建.进程PID.join方法.进程对象属性.守护进程 ...

  8. python并发编程基础之守护进程、队列、锁

    并发编程2 1.守护进程 什么是守护进程? 表示进程A守护进程B,当被守护进程B结束后,进程A也就结束. from multiprocessing import Process import time ...

  9. python--管道, 事件, 信号量, 进程池

    一 . 管道 (了解) from multiprocessing import Process, Pipe def f1(conn): # 管道的recv 里面不用写数字 from_main_proc ...

随机推荐

  1. linux防火墙(三)—— iptables语法之匹配条件

    一.iptables规则的匹配条件类型有三类 1.通用匹配:可直接使用,不依赖于其他条件或扩展,包括网络协议.IP地址.网络接口等条件 2.隐含匹配:要求以特定的协议匹配作为前提,包括端口.TCP标记 ...

  2. java实现office文件预览

    不知觉就过了这个久了,继上篇java实现文件上传下载后,今天给大家分享一篇java实现的对office文件预览功能. 相信大家在平常的项目中会遇到需要对文件实现预览功能,这里不用下载节省很多事.大家请 ...

  3. vue-cli项目配置文件分析

    最近在vue-cli生成的webpack模板项目的基础上开发了一些项目,开发过程中遇到很多坑,并且需要改动build和config里面一些相关的配置,查阅,学习,总结,分享. 一.配置文件结构 本文主 ...

  4. 李航统计学习方法——算法2k近邻法

    2.4.1 构造kd树 给定一个二维空间数据集,T={(2,3),(5,4),(9,6)(4,7),(8,1),(7,2)} ,构造的kd树见下图 2.4.2 kd树最近邻搜索算法 三.实现算法 下面 ...

  5. java重点知识

    一.java基本知识点 java是由SUN公司在1995年推出的,在2009年SUN公司又被甲骨文公司收购,所以甲骨文公司获得java版权.其底层是由C语言写的,java分为三个体系: JavaSE, ...

  6. Disruptor多个消费者不重复处理生产者发送过来的消息

    1.定义事件事件(Event)就是通过 Disruptor 进行交换的数据类型. package com.ljq.disruptor; import java.io.Serializable; /** ...

  7. The case for learned index structures

    17年的旧文,最近因为SageDB论文而重读. 文章主要思路是通过学习key的顺序.结构等来预测record在位置.存在与否等.效果方面,据称部分场景下,相对b-tree可以优化70%的内存占用. 最 ...

  8. 25-hadoop-hive-函数

    内置函数: 函数分类: 内置函数查看: show funcitons; 查看函数描述: DESC FUNCTION concat; 具体见: https://cwiki.apache.org/conf ...

  9. CodeForces -977F(突破定式思维+map应用)

    题目链接: https://cn.vjudge.net/problem/CodeForces-977F /* 问题 输入n和n个数的数列 计算并输出最长增量为1的上升子序列 解题思路 用n2的最长上升 ...

  10. laravel 区块继承

    看到我的文章感觉有用的话,在评论区下面扣1,能够让我感受到你们的存在,也给我动力继续写的更好,谢谢 定义: 在layouts\admin.blade.php @yield('要定义的区块名') @yi ...